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In a classical-type flag variety, we consider a Schubert variety 
associated to a vexillary (signed) permutation, and establish 
a combinatorial formula for the Hilbert-Samuel multiplicity of 
a point on such a Schubert variety. The formula is expressed 
in terms of excited Young diagrams, and extends results for 
Grassmannians due to Krattenthaler, Lakshmibai-Raghavan-
Sankaran, and for the maximal isotropic (symplectic and or-
thogonal) Grassmannians to Ghorpade-Raghavan, Raghavan-
Upadhyay, Kreiman, and Ikeda-Naruse. We also provide a new 
proof of a theorem of Li-Yong in the type A vexillary case.
The main ingredient is an isomorphism between certain neigh-
borhoods of fixed points, known as Kazhdan-Lusztig varieties, 
which, in turn, relies on a direct sum embedding previously 
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used by Anderson-Fulton to relate vexillary loci to Grassman-
nian loci.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Singularities of Schubert varieties have been the subject of much study for decades. 
At a coarse level, there are efficient criteria for determining whether a given Schubert 
variety is smooth or singular (e.g., via pattern avoidance); see [5] for a detailed survey of 
this and related problems. In sufficiently large flag varieties, nearly all Schubert varieties 
are singular, so one is led to consider the question of finer invariants of singularities. For 
instance, one can ask about the Hilbert-Samuel multiplicity of a point. This is a positive 
integer which measures singularities: it equals 1 if and only if the point is nonsingular, 
and larger multiplicities correspond to more complicated singularities.

Schubert varieties Ωw and torus-fixed points pv are both indexed by the Weyl group, 
with pv ∈ Ωw iff w ≤ v in Bruhat order. So for any pair (w, v) with w ≤ v, a natural 
problem arises:

Find an explicit formula for the positive integer multpv
Ωw.

(Using a Borel group action, any point x ∈ Ωw may be translated to some torus-fixed 
point pv, so answering this question for fixed points solves the problem for arbitrary 
points.)

The main goal of this article is to solve the above problem in the case where the 
ambient flag variety is of classical type, and the Schubert variety Ωw is indexed by a 
vexillary element of the Weyl group (in the sense of [3], see §3 for the definition).

In the case of Grassmannians—including the (co)minuscule Grassmannians of maxi-
mal isotropic subspaces in types B, C, and D—several combinatorial, determinantal, and 
Pfaffian formulas are known, and due to many mathematicians. In type A, Lakshmibai-
Weyman [22], and Rosenthal-Zelevinsky gave a determinantal formula [29], while Krat-
tenthaler [19] and Lakshmibai-Raghavan-Sankaran [23] gave combinatorial formulas, in 
terms of non-intersecting lattice paths. The last of these results was reinterpreted by 
Kreiman [20] and Ikeda-Naruse [13] in terms of combinatorial objects called excited 
Young diagrams. In other classical types, Pfaffian formulas for maximal isotropic Grass-
mannians were given by Ikeda [12] and Ikeda-Naruse [13]. Combinatorial formulas for 
the Lagrangian Grassmannian were given by Ghorpade-Raghavan [10], Kreiman [21], 
and Ikeda-Naruse [13] independently. For the maximal orthogonal Grassmannian, com-
binatorial formulas were given by Raghavan-Upadhyay [27] and Ikeda-Naruse [13].

Some of these authors ([12,13,20,21,23]) used torus actions to compute an equivariant
multiplicity; in the (co)minuscule case, this leads directly to a formula for the usual 
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multiplicity, e.g., as explained in [13, Proposition 9.1]. Outside of the cominuscule setting, 
this technique is not available, because the ideals are no longer homogeneous with respect 
to the natural torus action. Partly for this reason, less is known beyond the Grassmannian 
case.

The class of vexillary permutations is a natural generalization of Grassmannians. 
These were Lascoux and Schützenberger in the context of determinantal formulas for 
Schubert polynomials in type A. An analogous notion for signed permutations (in the 
other classical types) was introduced by Billey and Lam [6]; this was later revisited in a 
geometric context, better adapted to our situation [3].

Li and Yong took this first step beyond Grassmannians: in the type A flag variety, they 
computed the multiplicity of a Schubert variety indexed by a vexillary permutation [25]. 
Their methods involve a detailed analysis of the ideal defining such a Schubert variety, 
and include a Gröbner basis for such ideals. Their combinatorial language is that of 
flagged semistandard tableaux, which is in natural bijection with others mentioned above 
(lattice paths, excited Young diagrams) and also admits a determinantal formula.

The type A results of Li and Yong inspired our investigation of vexillary Schubert 
varieties in the other classical types. To state the theorem, we need some notation, which 
will be reviewed in more detail below (see §3). Each vexillary permutation w comes with 
a partition λ, and to any v ≥ w we associate an outer shape μ ⊃ λ. An excitation (or 
excited Young diagram) of λ in μ is a collection of boxes C ⊂ μ which are obtained from 
those of λ by a sequence of certain local moves (whose precise description depends on 
type). We write Eμ(λ) for the set of all such excitations.

Here is an example in type A, where a permutation is vexillary if and only if it avoids 
the pattern 2 1 4 3, and the local moves generating excited Young diagrams are of the 
form

→ .

For the vexillary permutation w = 1 2 5 4 3 6 7, the corresponding partition is λ = (2, 1). 
The permutation v = 5 2 6 4 1 7 3 is above w in Bruhat order, and the associated outer 
shape is μ = (3, 3, 2). Then Eμ(λ) consists of the 5 diagrams

.

Theorem. Let w be a vexillary (signed) permutation, and v any element such that w ≤ v. 
Let pv ∈ Ωw be the corresponding fixed point and Schubert variety, and let λ ⊂ μ the 
corresponding partition and outer shape. Then

multpv
Ωw = #Eμ(λ),
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where Eμ(λ) is the set of excited states of λ inside μ.

In the setting of the above example, the theorem says multpv
Ωw = 5.

Our approach yields an a priori reason for the fact that multiplicities of points on 
vexillary Schubert varieties are computed by a formula which also computes multiplici-
ties on Grassmannian Schubert varieties; in particular, we provide an alternative proof 
of [25, Theorem 6.2]. The main innovation is an explicit isomorphism, up to irrele-
vant factors of affine spaces, between canonical affine neighborhoods of fixed points in 
Schubert varieties in the flag variety and Grassmannian. These neighborhoods are some-
times called Kazhdan-Lusztig varieties, and they have been studied by many authors 
[7,17,24,25,30,31]; see §7 for details.

The isomorphism is set up using a direct-sum embedding of a flag variety in a larger 
one. When Ωw is a vexillary Schubert variety in the (ordinary or isotropic) flag variety for 
a vector space V , we construct local isomorphisms with the Schubert variety Ωλ in the 
Grassmannian of (ordinary or isotropic) half-dimensional subspaces of V ⊕V . This allows 
us to reduce the computation of local invariants of points on vexillary Schubert varieties 
to a known calculation on Grassmannian Schubert varieties. We expect this method will 
find further use; see [15] for an application to Kazhdan-Lusztig polynomials.

The arguments proceed in parallel for all classical types. All the essential ideas appear 
in type A, so the reader is encouraged to digest that case first.

One can consider more refined invariants, such as the Hilbert series. For Schubert 
varieties in any (co)minuscule Grassmannian—including types E6 and E7, as well as the 
maximal Grassmannians in classical types—Lakshmibai and Weyman gave a positive 
recursive formula for the Hilbert series and multiplicity [22]. For classical-type Grass-
mannians, the Hilbert series was computed explicitly by Kodiyalam-Raghavan [18] in 
type A, Ghorpade-Raghavan [10] in type C, and Raghavan-Upadhyay [27] in type D. 
Using equivariant K-theory and variations on excited Young diagrams, these invariants 
were also studied by Graham-Kreiman [11]. For vexillary Schubert varieties in type A, 
the Hilbert series was studied by Li-Yong in connection with Kazhdan-Lusztig polyno-
mials [24]. It would be interesting to see analogues of these results for vexillary Schubert 
varieties in other classical types.

Some of our results were announced at FPSAC XXXI (2019) and appeared in the 
proceedings of that meeting [4]. The proof sketch given there ([4], §4) contains an in-
correct assertion and a major gap; however, it is replaced by the significantly stronger 
isomorphism of Kazhdan-Lusztig varieties given here in §7.

Acknowledgments. TI is particularly indebted to K. N. Raghavan and Vijay Ravikumar 
for stimulating discussions in the early stages of this project. We also thank Tomoo 
Matsumura for valuable discussions, and the anonymous referee for helpful comments 
and corrections.
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2. Notation and definitions

We work over an algebraically closed field K of characteristic1 not equal to 2.
Let G be a semisimple linear algebraic group defined over K. Fix a maximal torus T

and a Borel subgroup B such that T ⊂ B ⊂ G. Let W = NG(T )/T be the Weyl group. 
The fixed points of G/B under the left action of T are naturally indexed by the Weyl 
group W of G with respect to T : given w ∈ W , we write pw ∈ G/B for the associated 
fixed point.

Let B− be the opposite Borel subgroup, so B ∩B− = T . The Schubert cell Ω◦
w is the 

B− orbit B− · pw. The closure of a Schubert cell is the Schubert variety Ωw = Ω◦
w, a 

subvariety of codimension �(w), where �(w) is the length of w. The Weyl group is partially 
ordered by Bruhat order, defined by w ≤ v if and only if pv ∈ Ωw. The Schubert variety 
Ωw is a disjoint union of Schubert cells Ω◦

v such that v ≥ w.
We will also occasionally consider opposite Schubert cells X◦

w = B · pw. These are 
affine spaces of dimension �(w).

In what follows, we quickly review type-specific notation for Schubert varieties in 
Grassmannians and flag varieties. More discussion can be found in sources such as [9]. 
In each case, after fixing a basis, G will be a particular matrix group, T will be diagonal 
matrices in G, B upper-triangular matrices in G, and B− lower-triangular matrices in 
G.

Type A. Let V be a vector space of dimension n with basis eee1, . . . , eeen, and G =
SL(V ) = SLn. The Weyl group is Sn, the symmetric group of permutations of 
[n] := {1, . . . , n}. We write permutations w ∈ Sn in one-line notation, by recording 
values: w = w(1) w(2) · · ·w(n).

The flag variety G/B is the variety Fl(V ) of complete flags

E• : {000} ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En = Kn, dim(Ei) = i (1 ≤ i ≤ n).

For w ∈ Sn the corresponding T -fixed point pw is given by Ei = span{eeew(1), . . . , eeew(i)}.
The B−-fixed flag F • is given by subspaces F i = span{eeen, . . . , eeei+1}, of codimension 

i. Schubert varieties are defined by intersection conditions with F •, as follows. For each 
w ∈ Sn, the function kw is defined on the n × n grid by

kw(q, p) = #{s ∈ [n] | s ≤ p, w(s) > q}, (q, p) ∈ [n] × [n].

The Schubert variety is

Ωw = {E• | dim(Ep ∩ F q) ≥ kw(q, p) for all 1 ≤ q, p ≤ n}. (1)

1 We rely on some sources where results are stated over C—e.g., [13] and [20,21]—but the same proofs work 
over arbitrary algebraically closed fields. See [22], which implies that for (co)minuscule Schubert varieties, 
the multiplicity is independent of characteristic; the question of whether this is true in general is raised at 
the end of [25, §8]. In type A, our methods work in arbitrary characteristic, but in other types, we must 
avoid characteristic 2.
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An alternative description is

Ωw = {E• | rank(Ep → V/F q) ≤ rw(q, p) for all 1 ≤ q, p ≤ n},

where

rw(q, p) = #{s ∈ [n] | s ≤ p, w(s) ≤ q}, (q, p) ∈ [n] × [n]

= p− kw(q, p).

Let d be an integer such that 1 ≤ d ≤ n = dim(V ). In the Grassmannian Gr(d, V ) of 
d-dimensional subspaces, T -fixed points and Schubert varieties are indexed by partitions 
λ whose Young diagram fits inside the d × (n − d) rectangle; that is,

λ = (n− d ≥ λ1 ≥ · · · ≥ λd ≥ 0).

Each such λ determines a Grassmannian permutation wλ, with unique descent at d, as 
follows. Let I(λ) = {i1 < · · · < id} be defined by ik = k + λd+1−k, and let J(λ) = {j1 <

· · · < jn−d} = [n] � I(λ) be the complement. Then

wλ = i1 · · · id j1 · · · jn−d.

This has length is equal to the number of boxes in λ, that is, �(wλ) = |λ| :=
∑

λk.
We refer the reader to the example in the introduction and [13, Section 3.3] for the 

relation between a partition λ and its Young diagram as well as wλ.
The T -fixed point pλ ∈ Gr(d, V ) corresponds to the subspace spanned by {ei | i ∈

I(λ)}. This is the same as the d-dimensional component of the T -fixed flag corresponding 
to wλ.

The Schubert variety Ωλ ⊂ Gr(d, V ) is the closure of the Schubert cell Ω◦
λ = B− · pλ. 

It can be described as

Ωλ = {E ∈ Gr(d, V ) | dim(E ∩ Fλk+d−k) ≥ k for 1 ≤ k ≤ d}.

This has codimension |λ| in Gr(d, V ).
The projection πd : Fl(V ) → Gr(d, V ) which sends a flag E• to Ed is a locally trivial G-

equivariant fiber bundle, with smooth fibers; the fiber over Ed ⊂ V is naturally identified 
with Fl(Ed) × Fl(V/Ed). Furthermore, one has

Ωwλ
= π−1

d Ωλ,

so in particular Ωwλ
is a smooth fiber bundle over Ωλ.

Type C. Let V be a vector space of dimension 2n with basis eeen, . . . , eee1, eee1, . . . , eeen. Let 
us define a skew-symmetric bilinear form on V by 〈eeei, eeej〉 = 〈eeeı, eeej〉 = 0 and 〈eeeı, eeej〉 =
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−〈eeej , eeeı〉 = δi,j for 1 ≤ i, j ≤ n. (The bar is meant to indicate a negative number, so 
a = −a.) The Gram matrix looks like this:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

. .
.

1
−1

. .
.

−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Let G = Sp(V ) = Sp2n be the symplectic group with respect to the form. As we noted 
above, we choose a torus T consisting of diagonal matrices in Sp2n(K), a Borel group 
B of the upper triangular matrices in Sp2n(K), and an Borel subgroup B− opposite to 
B of the lower-triangular matrices. The Weyl group is the group of signed permutations 
Wn = Sn�{±1}n. This is often realized as the subgroup Wn of S2n such that w(ı) = w(i)
for all i. Here we consider S2n as the group of permutations of {±1, . . . , ±n}. We usually 
write a signed permutation w in “one-line notation” w(1) · · ·w(n) (note that we only 
need to record w(i) (i ∈ [n]).

An isotropic flag is a sequence of linear subspaces

E• : {000} ⊂ En ⊂ En−1 ⊂ · · · ⊂ E1 ⊂ V ∼= K2n, dim(Ei) = n + 1 − i (1 ≤ i ≤ n),

where Ei are all isotropic. In particular, E1 is a Lagrangian subspace, i.e., a maximal 
isotropic subspace of V . The variety FlC(V ) = Sp2n/B is identified with the set of all 
isotropic flags.

The unique B−-fixed isotropic flag is given by Fq = span{eeen, . . . , eeeq} for 1 ≤ q ≤ n. 
This is extended to a complete flag by setting

Fq = F⊥
q+1 = span{eeen, . . . , eee1, eee1, . . . , eeeq}

for 1 ≤ q ≤ n.
Given w ∈ Wn, the Schubert variety is described as

Ωw = {E• | dim(Ep ∩ Fq) ≥ kw(q, p) for all p ∈ {1, . . . , n}, q ∈ {n, . . . , 1, 1, . . . , n}},

where the function kw associated to w is defined by

kw(q, p) = #{s | s ≤ p, w(s) ≥ q}.

As in type A, the Schubert variety can also be written

Ωw = {E• | rank(Ep → V/Fq) ≤ rw(q, p)}
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for all 1 ≤ p ≤ n and q ∈ {n, . . . , 1, 1, . . . , n}. Here

rw(q, p) = #{s ∈ {n, . . . , 1} | s ≤ p, w(s) < q}
= n + 1 − p− kw(q, p).

We write LG(V ) for the Lagrangian Grassmannian parametrizing n-dimensional 
isotropic subspaces of V . The index set for the Schubert varieties and T -fixed points 
is the set of strict partitions λ = (λ1, . . . , λn) satisfying

n ≥ λ1 > · · · > λr > 0, and λi = 0 for r < i ≤ n (2)

for some r ≤ n. Equivalently, λ is an r-element subset of {1, . . . , n}. We denote by 
r = �(λ), the length of λ. Given such a λ, the corresponding Schubert variety is

Ωλ = {W ∈ LG(V ) | dim(W ∩ Fλi
) ≥ i for 1 ≤ i ≤ �(λ)}, (3)

of codimension |λ|.
Thinking of λ as a subset of {1, . . . , n}, the fixed point pλ corresponds to the 

isotropic subspace spanned by eeei for i ∈ λ, together with eeeı for i /∈ λ. For example, 
p∅ = span{eeen, . . . , eee1}, and p(n,...,2,1) = F1 = span{eee1, . . . , eeen}. The Schubert variety Ωλ

is the closure of the Schubert cell Ω◦
λ = B− · pλ.

Each strict partition λ = (λ1, . . . , λr) corresponds to a Grassmannian signed permu-
tation

wλ = λ1 · · ·λrj1 · · · jn−r,

where {j1 < · · · < jn−r} = [n]\{λ1, . . . , λr}. See, e.g., [14, Section 3.4].
Let π : FlC(V ) → LG(V ) be the projection sending an isotropic flag E• to the max-

imal isotropic subspace E1. As for type A, this is a G-equivariant fiber bundle, where 
each fiber is smooth and the fiber over E1 is isomorphic to the flag variety Fl(E1). We 
have π−1Ωλ = Ωwλ

, and Ωwλ
is a fiber bundle over the Schubert variety Ωλ.

Type B. Let V be a vector space of dimension 2n +1, with basis eeen, . . . , eee1, eee0, eee1, . . . , eeen. 
We have a symmetric bilinear form on V , defined by 〈eeei, eeej〉 = 〈eeei, eeej〉 = 〈eee0, eeej〉 =
〈eee0, eeej〉 = 0, 〈eeei, eeej〉 = δi,j for 1 ≤ i, j ≤ n, and 〈eee0, eee0〉 = 1. So its Gram matrix looks 
like this: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

. .
.

1
1

1

. .
.

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Let G = SO(V ) = SO2n+1 be the special orthogonal group with respect to the form. The 
Weyl group is the same as in type C, the group of signed permutations Wn = Sn�{±1}n.

The isotropic flag variety FlB(V ) = SO2n+1/B consists of a sequence of linear sub-
spaces

E• : {000} ⊂ En ⊂ En−1 ⊂ · · · ⊂ E1 ⊂ V ∼= K2n+1, dim(Ei) = n + 1 − i (1 ≤ i ≤ n),

where Ei are all isotropic. In particular, E1 is a maximal isotropic subspace of V . Let 
us define

Fi = spanK{eeei, . . . , eeen} for 1 ≤ i ≤ n.

Then F• = (F1 ⊃ · · · ⊃ Fn) is the unique isotropic flag fixed by B−. Note that F1 is a 
maximal isotropic subspace.

Inside the odd Orthogonal Grassmannian OG(n, V ) of n-dimensional isotropic sub-
spaces of V , the Schubert variety associated with λ is given by the same conditions (3) as 
in type C. The correspondence between T -fixed points of OG(n, V ) and strict partitions 
inside the n-staircase is also the same as in type C.

Type D. We consider a vector space V of dimension 2n with a basis indexed by the set 
{n, . . . , 1, 1, . . . , n}. Let us define a symmetric bilinear form on V by 〈eeei, eeej〉 = 〈eeei, eeej〉 =
0, 〈eeei, eeej〉 = δi,j for 1 ≤ i, j ≤ n. Its Gram matrix is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

. .
.

1
1

. .
.

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Let G = SO(V ) = SO2n be the special orthogonal group with respect to the form. 
The Weyl group is the subgroup W+

n ⊂ Wn consisting of signed permutations with even 
number of sign changes.

Let FlD(V ) = SO2n/B. Here an isotropic flag is a chain of subspaces

E• : {000} ⊂ En−1 ⊂ · · · ⊂ E1 ⊂ E0 ⊂ V ∼= K2n,

with dim(Ei) = n − i for 1 ≤ i ≤ n, where E0 is a maximal isotropic subspace of V . We 
fix F• given by Fq = spanK{eeeq+1, . . . , eeen} for 0 ≤ q ≤ n − 1 as the reference isotropic 
flag, extended to a complete flag by Fq = F⊥

q for 1 ≤ q ≤ n. (Here Fn = 0.)
The type D flag variety FlD(V ) is the set of all isotropic flags in V , with the additional 

condition that dim(E0 ∩ F0) is even.
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Given w ∈ W+
n , the corresponding Schubert variety in Ωw ⊂ FlD(V ) is the closure of 

the cell

Ω◦
w =

{
E• | dim(Ep ∩ Fq) = kw(q, p) for 0 ≤ p ≤ n− 1

and q ∈ {n− 1, . . . , 0, 0, . . . , n− 1}
}
,

where now kw(q, p) = #{s < p | w(s) > q}.
The (even) orthogonal Grassmannian OG+(n, V ) is the set of maximal isotropic sub-

spaces W in V such that dim(W ∩F0) is even. For a strict partition λ, the corresponding 
Schubert variety in OG+(n, V ) is the closure of

Ω◦
λ = {W ∈ OG+(n, 2n) | dim(W ∩ Fλi

) = i for 1 ≤ i ≤ �(λ)}.

Its codimension in OG+(n, 2n) is |λ|.
Fixed points in OG+(n, 2n) are parametrized as follows. Let λ = (λ1 > · · · > λr ≥ 0)

be a strict partition. We may ensure r = �(λ) is even by including or omitting a 0
part, as needed. The fixed point pλ is the maximal isotropic subspace spanned by eeei for 
i ∈ {λ1, . . . , λr} and eeeı for i ∈ {0, . . . , n} � {λ1, . . . , λr}.

For instance, we have a T -fixed point p∅ = span{eeen, . . . , eee1}. If n is even, then 
p(n−1,...,1) = p(n−1,...,1,0) = span{eee1, eee2, . . . , eeen}; if n is odd, then p(n−1,...,1) =
span{eee1, eee2, . . . , eeen}.

Given λ = (λ1 > · · · > λr ≥ 0) with r even, set λ+ = (λ1 + 1 > · · · > λr + 1). The 
type D Grassmannian signed permutation associated to λ is the type C one associated 
to λ+, i.e.,

wλ = λ1 + 1 · · ·λr + 1 j1 · · · jn−r,

where {j1 < · · · < jn−r} = [n] � {λ1 + 1, . . . , λr + 1}.

3. Vexillary (signed) permutations and Schubert varieties

Here we review the notions we need related to vexillary permutations. For type A, 
this is standard by now (see, e.g., [8,26]). For other types, vexillary elements were first 
considered by Billey and Lam [6]. We use a variation introduced in [2,3], which is adapted 
to the geometry of Schubert varieties: in each type, a vexillary (signed) permutation w
corresponds to a triple (kkk, ppp, qqq), which in turn records a set of essential conditions defining 
the Schubert variety Ωw.

We also recall the shape λ of a vexillary element w. What is new here is the notion 
of an outer shape μ ⊇ λ associated to any v ≥ w. (In type A, this turns out to recover 
notation used by Li and Yong [25].)
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3.1. Type A

For w ∈ Sn, there is a subset Ess(w) of the grid [n] × [n] of boxes such that

Ωw = {E• | dim(Ep ∩ F q) ≥ kw(q, p) for all (q, p) ∈ Ess(w)}. (4)

Ess(w) is called the essential set of w, which is defined as follows. The Rothe diagram
D(w) of w is a collection of boxes (q, p) ∈ [n] × [n] (arranged as in the matrix indices) 
defined by

D(w) = {(i, j) | i < w(j), j < w−1(i)}.

One way to obtain D(w) is to put dots in the boxes (w(j), j) for 1 ≤ j ≤ n, and then 
remove (or shade) all the boxes which are south or east of a dot. The set of remaining 
(unshaded) boxes is D(w). Then Ess(w) is the set of south-east corners of D(w). For 
example, take w = 1 3 5 7 4 2 6 (which is vexillary). As shown in the following figure, 
D(w) is the set of unshaded boxes, and Ess(w) is the set of boxes with stars.

•
� •

•
� •

•
� •
•

A permutation w can be recovered by knowing Ess(w) and the values of dimension 
function kw at all (q, p) ∈ Ess(w) ([8, Lemma 3.10 (a)]). We also remark that w ≤ v if 
and only if kw(q, p) ≤ kv(q, p) for all (q, p) ∈ Ess(w).

3.1.1. Vexillary permutations
A permutation w is vexillary if the boxes in Ess(w) can be ordered e1, . . . , es, pro-

ceeding (weakly) from south-west to north-east — that is, if we set ei = (qi, pi), then we 
have

1 ≤ p1 ≤ · · · ≤ ps ≤ n and n ≥ q1 ≥ · · · ≥ qs ≥ 1. (5)

Let ki = kw(ei) (1 ≤ i ≤ s). Then (4) reads

Ωw = {E• | dim(Epi
∩ F qi) ≥ ki for i = 1, . . . , s}. (6)

For the above example, we have e1 = (6, 4), e2 = (4, 4), e3 = (2, 5), and
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ppp = (4, 4, 5), qqq = (6, 4, 2), kkk = (1, 2, 4).

It is known from [2] that we have

0 ≤ k1 < · · · < ks ≤ n, (7)

qi − pi + ki > qi+1 − pi+1 + ki+1 for 1 ≤ i ≤ s− 1, and qs − ps + ks > 0. (8)

If, on the other hand, we have integer vectors kkk, ppp, qqq satisfying (5), (7), (8), we call 
τ = (kkk, ppp, qqq) a triple. For each triple τ , there is a unique vexillary permutation w (see 
[2,3]). We may use the notation w(τ) to indicate the vexillary permutation corresponding 
to a triple τ .

Let S#
n denote the set of all vexillary permutations in Sn. These can be characterized 

in terms of Ess(w), and recovered from the restriction of dimension function to Ess(w), 
as follows. A permutation w is vexillary if and only if the boxes in Ess(w) can be ordered 
e1, . . . , es, proceeding (weakly) from south-west to north-east—that is, ei = (qi, pi), with 
p1 ≤ · · · ≤ ps and q1 ≥ · · · ≥ qs. Let ki := kw(qi, pi), for 1 ≤ i ≤ s. Then w is the unique 
minimal permutation (in Bruhat order) which has ki dots strictly south and weakly west 
of box ei, for each i. For the above example, we have e1 = (6, 4), e2 = (4, 4), e3 = (2, 5), 
and

ppp = (4, 4, 5), qqq = (6, 4, 2), kkk = (1, 2, 4).

3.1.2. Shape of a vexillary permutation
For each vexillary w(τ), there is an associated partition λ, the smallest partition such 

that

λki
= qi − pi + ki (1 ≤ i ≤ s).

The shape λ can also be obtained from the diagram. If we set ri = rw(ei), we have 
ri = pi − ki, and the partition λ = sh(w) is obtained as follows: We move each ei
diagonally north-west by ri units, denoted by e′i. Next we make a Young diagram fitting 
at north-west corner of the n × n grid having e′i’s as corners. Then λ is the transpose 
(conjugate) of the partition. For example, we have sh(w) = (3, 2, 1, 1).

• e′3
e′2 � •

e′1 •
� •

•
� •
•
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3.1.3. Outer shape
Let w be a vexillary permutation, and let v be a permutation with w ≤ v. For each 

essential box e in Ess(w), let e′ be the box obtained by moving e diagonally north-west 
by rv(e) units. The outer shape μ is the transpose of the smallest Young diagram sitting 
at north-west corner of the n × n grid and containing all the boxes e′. For example, 
consider w = 5 4 6 1 7 2 8 3 and v = 8 7 6 5 4 3 2 1 ≥ w. Then we obtain the outer shape 
μ = (4, 3, 3, 3, 3) with the diagram below. (Since rv(e1) = rv(e2) = rv(e3) = 0, these 
boxes do not move; and rv(e4) = 2, so this box moved 2 units NW to e′4.)

e′4 •
•

e2 e3 • e4
e1 •

•
•

•
•

The outer shape for w ≤ v can also be obtained from a weak triple τ ′ = (kkk′, ppp, qqq)
associated to the pair (w, v). Since w is vexillary, it has a corresponding triple τ =
(kkk, ppp, qqq). Then τ ′ is formed by setting k′i = kv(qi, pi). (If k′i = k′i+1, which is possible, 
then the coming from (k′i, pi, qi) dominates; this is the stronger condition.) Since v ≥ w, 
we have k′i ≥ ki for each i. The partition μ is the one associated to τ ′ by the previous 
formula: μk′

i
= qi − pi + k′i, with other parts filled in minimally. (In case k′i = k′i+1, one 

uses μk′
i
= qi − pi + k′i, as this will be the larger of the two possibilities.)

Remark 3.1. It was shown in [25] that there is a unique vexillary Θv,w such that a 
subset of e′’s obtained by moving e ∈ Ess(w) form the essential boxes of Θv,w. In fact, 
this vexillary permutation can be constructed from the weak triple τ ′, by a procedure 
similar to the one constructing w from τ . For our example, we have Θv,w = 5 4 6 2 7 1 3 8.

3.2. Type C

Let W#
n = S#

2n ∩ Wn be the set of vexillary signed permutations. For w ∈ W#
n , we 

have a subset Ess−(w) ⊂ {n, . . . , 1, 1, . . . , n} ×{n, . . . , 1} such that the Schubert variety 
is given by

Ωw = {E• | dim(Ep ∩ Fq) ≥ kw(q, p) for all (q, p) ∈ Ess−(w)}. (9)
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An element e ∈ {n, . . . , 1, 1, . . . , n} × {n, . . . , 1} is an essential box of w if e is a south-
east corner of D−(w) := D(w) ∩ ({n, . . . , 1, 1, . . . , n} × {n, . . . , 1}), and not in the set 
{(i, 1) | i < 1}. Let Ess−(w) be the set of essential boxes of w.2

The following example shows the essential position for a signed vexillary permutation 
w = 1 2 3 5 4, with diagram shown below.

5 4 3 2 1
5
4
3 •
2
1 e3

1 e2 •
2 •
3 e1

4 •
5 •

We note that the position (4, 1) is not an essential box.

3.2.1. Vexillary signed permutations
Let e1, . . . , es be the elements in Ess−(w) arranged from south-west to north-east. Let 

us define a triple (kkk, ppp, qqq) of integer sequence associated with w by

ki = kw(ei), pi = −(column index of ei), qi = (row index of the box just below ei).

Then we have 1 ≤ pi, qi ≤ n (see [1,3]). Here we adopt a different convention from the one 
for type A in §3.1. The Schubert variety (9) associated to a vexillary signed permutation 
w can be defined by

Ωw = {E• | dim(Epi
∩ Fqi) ≥ ki for i = 1, . . . , s}. (10)

The triple τ = (kkk, ppp, qqq) of integer sequences satisfies

kkk : 0 < k1 < · · · < ks, ppp : n ≥ p1 ≥ · · · ≥ ps ≥ 1, and qqq : n ≥ q1 ≥ · · · ≥ qs ≥ 1,
(11)

and

qi + pi + ki > qi+1 + pi+1 + ki+1 for 1 ≤ i ≤ s− 1. (12)

2 For general signed permutations, the definition of essential set is slightly more complicated [1]. Here we 
use a simplified version which is valid in the vexillary case (see [3, p. 8, lines 16–17]).
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5 4 3 2 1
5 × × × ×
4 × × ×
3 • × ×
2 e

′
3 ×

1 e
′
2 e3

1 e2 •
2 •
3 e1

4 •
5 •

Fig. 1. Shape of w = 1 2 3 5 4.

5 4 3 2 1
5 × × × ×
4 × × ×
3 × ×
2 ×
1 e

′
2 e3

1 • e2

2 •
3 e1 •
4 •
5 •

Fig. 2. Outer shape.

One can recover a vexillary (signed) permutation w := w(τ) in W#
n from a triple τ ; see 

[2,3].

3.2.2. Shape of a signed vexillary permutation
For each vexillary signed permutation w, λ := λ(τ) is the smallest strict partition 

such that

λki
= qi + pi − 1 (1 ≤ i ≤ s).

In other words, the strict partition λ(τ ) = (λ1 > · · · > λks
> 0) has parts λk =

pi + qi − 1 + ki − k whenever ki−1 < k ≤ ki. (We use the convention k0 = 0.)
A graphical construction is given as follows. If we set ri = rw(ei), the partition λ =

sh(w) is obtained as follows: We move each ei diagonally north-west by ri units, denoted 
by e′i. Next we make a Young diagram λ̃ fitting at north-west corner of the n × n grid 
having e′i’s as corners (as in type A). Then we remove boxes strictly upper to the diagonal 
from the Young diagram λ̃. The desired strict partition is the transpose of this along the 
diagonal.

The vexillary element w = 1 2 3 5 4 has shape λ = (8, 7, 3, 1), which can be seen in 
Fig. 1.

3.2.3. Outer shape
Given a vexillary element w and any v ≥ w, the outer shape μ is the smallest shifted 

diagram containing all the e′ with e ∈ Ess(w). For instance, given w as above and 
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v = 2 3 1 5 4 in W5, we move the essential boxes and take the smallest shifted diagram 
to get the outer shape μ = (8, 7, 3, 2, 1), in Fig. 2.

As in type A, there is a weak triple τ ′ = (kkk′, ppp, qqq) associated to w ≤ v, obtained by 
setting k′i = kv(qi, pi). The outer shape μ can be determined by setting μk′

i
= pi + qi−1, 

and filling in other parts minimally to obtain a strict partition. (If k′i = k′i+1, we use the 
same convention as before, setting μk′

i
= pi + qi − 1.)

3.3. Type D

We define W+,#
n = W+

n ∩ S#
2n, where W+

n is the index 2 subgroup of Wn consisting 
of signed permutations with an even number of sign changes.

The vexillary signed permutation w associated to τ in type D is the same as the 
vexillary permutation w of type C after replacing pi by pi + 1 and qi by qi + 1. The 
Schubert variety Ωw is described by the same conditions as in (10). A type D triple τ
for the Schubert variety satisfies

k : 0 < k1 < · · · < ks, p : p1 ≥ · · · ≥ ps ≥ 0, q : q1 ≥ · · · qs ≥ 0

of length s, with

pi + qi + ki > pi+1 + qi+1 + ki+1 (13)

for 1 ≤ i ≤ s − 1 (see [2]). In particular, the triple τ is given by the same sequences 
in type C, but the last components of each sequence, that is, ps and qs can be 0. If 
ps = qs = 0, then ks is required to be even. If ks is odd, we replace the triple by one 
with ks+1 = ks + 1 and ps+1 = qs+1 = 0.

3.3.1. Shape of a signed vexillary permutation
Given a vexillary signed permutation w with a triple τ , the smallest strict partition 

λ := λ(τ) is defined by

λki
= pi + qi (1 ≤ i ≤ s),

and λk = λki
+ ki − k for ki−1 < k ≤ ki with the convention k0 = 0. Note that 

λks
= 0 if ps = qs = 0. Also if we set the strict partition λ+ = λ(τ+) defined by 

λ+ = (λ1 + 1, . . . , λs + 1), λ+ becomes the strict partition for type C.
The shape of a vexillary permutation can also be seen from its diagram. For example, 

let us take w = 3 1 2 4 5. The type C shape is λ+ = (4, 2). Then we remove the diagonal 
boxes from the shape λ+ to obtain the shape λ = (3, 1) of type D, as in Fig. 3.
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5 4 3 2 1
5•×× × × ×
4 •×× × ×
3 e

′
2 × ×•×

2 e
′
1 × ×

1 e2 ×
1 e1 •
2 •
3
4
5

Fig. 3. Shape of w = 3 1 2 4 5.

5 4 3 2 1
5 × × × × ×
4 × × × ×
3 × ×•×
2 × ×
1 e

′
1 e2 ×

1 • e1

2 •
3
4 •
5 •

Fig. 4. Outer shape.

3.3.2. Outer shape
Given a type D vexillary permutation w with triple τ , and v ≥ w, the associated 

outer shape μ can be defined as before from the weak triple τ ′. Alternatively, μ+ =
(μ1 + 1, . . . , μks

+ 1) is the type C outer shape for the pair w ≤ v.
For example, consider w = 3 1 2 4 5 and v = 3 2 4 1 5, so w is vexillary (as before) 

and v ≥ w. Then from Fig. 4, we get μ+ = (5, 4, 3, 2). By removing the diagonal parts, 
we have the outer shape μ = (4, 3, 2, 1).

3.4. Type B

This is essentially the same as type C. The Weyl group is W = Wn. We use the same 
parametrization of vexillary signed permutations by (type C) triples, and the description 
of Ωw in terms of the triple looks the same as (10). The shape λ(τ ) is the same as in 
type C, as is the outer shape μ.

4. The multiplicity formula

Now we turn to our main theorem. First, we recall the definition and basic properties 
of the multiplicity we are computing.

Let X be an algebraic variety containing a point p. Let R = OX,p be the local ring of 
X at p, with maximal ideal m. The Hilbert-Samuel polynomial of R is given by

PR(n) = dimK(R/mn) = (u/d!) nd + · · ·
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for sufficiently large n, where d is the Krull dimension of R and u is a nonnegative 
integer. The Hilbert-Samuel multiplicity of R is the leading coefficient: it is defined as

multp(X) = u.

The following properties hold:

(1) If U ⊂ X is a (Zariski or étale) neighborhood of p, then multp(X) = multp(U).
(2) If (X, p) ∼−→ (X ′, p′) is an isomorphism, then multp(X) = multp′(X ′).
(3) For any affine space An with origin 0, we have multp(X) = mult(p,0)(X ×An).

These properties may be expressed concisely as follows: if X ′ → X is a smooth morphism, 
sending p′ �→ p, then multp′(X ′) = multp(X).

Next, we review the notion of excited Young diagram, following [13]. Consider a pair 
(ordinary or shifted) Young diagrams λ ⊂ μ. An excitation of λ is a collection of boxes 
inside μ which are obtained from λ by a sequence of elementary excitations. These depend 
on type. In type A, an elementary excitation is a local move of the form

� .

In type C, an elementary excitation is one of the following:

� , � .

In types B and D, elementary excitations are of the form

� , � . (14)

In each case, we write Eμ(λ) for the set of excitations of λ inside μ, the type being 
understood from context.

For Schubert varieties in Grassmannians (ordinary, Lagrangian, or maximal orthogo-
nal), we have the following formula for the multiplicity, due in this form to Ikeda-Naruse 
[13, §9]:

multpμ
Ωλ = #Eμ(λ). (15)

Now we can state our main theorem. Let G be a classical group, so one of SLn, 
Sp2n, SO2n+1, or SO2n, with Weyl group W . We consider Schubert varieties in the 
corresponding flag variety G/B (which is one of Fl(V ), FlC(V ), FlB(V ), or FlD(V ), 
for an appropriate vector space V ).
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Theorem 4.1. Let w and v be elements of W , with w vexillary and v ≥ w. Let λ = sh(w)
be the shape of w, and let μ be the outer shape associated to w and v. Then the Hilbert-
Samuel multiplicity of Ωw at pv is given by the formula

multpv
(Ωw) = #Eμ(λ).

We illustrate the theorem with examples in each type.

Example 4.2 (Type A). Consider permutations v = 87654321 ≥ w = 54617283. The 
shape of w is λ = (4, 3, 3, 2, 1) and the outer shape is μ = (4, 3, 3, 3, 3). Then we have 
multpv

(Ωw) = 2, computed from the excited Young diagrams shown below.

More generally, in type A there are bijections between several combinatorial objects: 
flagged set-valued tableaux, pipe dreams, and excited Young diagrams (see [25]). These 
sets are also enumerated by certain binomial determinants [13,19,25].

Example 4.3 (Type C). Take w = 1 2 3 4, v = 2 3 4 1. We know that w ≤ v such that 
λ = sh(w) = (3, 1) and μ = (4, 3, 1). By the type C elementary excitations, we have 
multpv

(Ωw) = 6.

Example 4.4 (Type D). Let w = 3 1 2 4 5 and v = 3 2 4 1 5. We know w ≤ v in Bruhat 
order, so that pv ∈ Ωw. Since λ = (3, 1) and μ = (4, 3, 2, 1), by applying the theorem, we 
get multpv

(Ωw) = 5 with the following excited states.

Example 4.5 (Type B). Let us consider a vexillary permutation w = 1 2 3 4 with a 
fixed point pv in Ωw for v = 2 3 4 1. Since the inner shape is (3, 1) and the outer 
shape is (4, 3, 1), by using Theorem 4.1 with type B excited Young diagrams, we get 
multpv

(Ωw) = 2.
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To prove Theorem 4.1, we reduce to the Grassmannian case, where the formula is given 
by (15). The details occupy the remainder of the paper; here we give a brief outline.

In each type, the vexillary Schubert variety Ωw ⊂ Fl(V ) is the preimage of an analo-
gously defined Schubert variety in a partial flag variety, Ω[w] ⊂ Fl(ppp, V ) (see §6 for the 
definition). Using smooth invariance of multiplicities, we work with Schubert varieties in 
these partial flag varieties. Here, we employ a direct sum embedding to map a vexillary 
Schubert variety Ωw to an inverse-Grassmannian Schubert variety Ωw−1

λ
in a larger (par-

tial) flag variety. This embedding sends pv to pw−1
μ

, up to an action by a group which 
preserves Ωw−1

λ
.

The main technical step is an isomorphism (up to product with affine space) between 
local neighborhoods of pv in Ωw and of pw−1

μ
in Ωw−1

λ
. More precisely, we show the 

corresponding Kazhdan-Lusztig varieties, X◦
v ∩Ωw and X◦

w−1
μ

∩Ωw−1
λ

, are isomorphic up 

to a product with affine space (Theorem 7.1).
At this point we have demonstrated multpv

Ωw = multp
w

−1
μ

Ωw−1
λ

. To finish, we apply a 

general local isomorphism—valid for all Schubert varieties in any G/B—between (Ωw, pv)
and (Ωw−1 , pv−1), to conclude

multp
w

−1
μ

Ωw−1
λ

= multpwμ
Ωwλ

= multpμ
Ωλ,

using the smooth invariance of multiplicities (and the projection to the Grassmannian) 
in the last equality. The theorem then follows from (15).

5. A local isomorphism

We need a lemma which relates w to w−1.

Lemma 5.1. Let Xw ⊂ G/B be a B-invariant (opposite) Schubert variety, with pv ∈ Xw

a fixed point corresponding to v ≤ w. Then the local ring of Xw at pv is isomorphic to 
the local ring of Xw−1 at pv−1 .

Proof. Consider the subvariety Z(w) ⊆ G/B ×G/B defined by

Z(w) = G · (pe, pw).

Let pr1 and pr2 be the projections Z(w) → G/B. Then pr−1
1 (pe) = Xw, while pr−1

2 (pe) =
Xw−1 . Both of these are locally trivial fiber bundles, so there is a neighborhood Ue ⊂ G/B

such that pr−1
1 (Ue) ∼= Ue ×Xw, and pr−1

2 (Ue) ∼= Xw−1 × Ue. So, up to a product with 
affine space, we have local isomorphisms of Z(w) at (pe, pv) with Xw at pv, and of 
Z(w) at (pv−1 , pe) with Xw−1 at pv−1 . Multiplication by (a coset representative for) v−1, 
diagonally on G/B × G/B, defines an automorphism of Z(w) which sends (pe, pv) to 
(pv−1 , pe). Composing these isomorphisms proves the lemma. �
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Remark 5.2. It is not true, in general, that the Schubert varieties Xw and Xw−1 are 
(globally) isomorphic. See, e.g., [28] for counterexamples and a criterion for global iso-
morphism.

Remark 5.3. Let Ωw = B− · pw = w◦ · Xw◦w, where w◦ is the longest element of W . 
A direct translation of the lemma establishes a local isomorphism of (Ωw, pv) with 
(Ωw◦w−1w◦ , pw◦v−1w◦). But using an isomorphism G/B

∼−→ G/B−, one can identify Ωw

with Ωw◦ww◦ , sending pv to pw◦vw◦ . Applying this, we obtain a local isomorphism of 
(Ωw, pv) with (Ωw−1 , pv−1).

6. The direct sum embedding

Here we describe the direct sum embedding Σ, which we will use repeatedly in what 
follows. For us, the key property is that a vexillary Schubert variety is the transverse 
intersection of the image of Σ with an inverse-Grassmannian Schubert variety in the 
(larger) target flag variety. The construction is similar in each type; while we spell out 
the details in each case, the reader is encouraged to focus on the type A case, which 
contains all the necessary information.

First, we make a general remark. Let P be a parabolic subgroup containing the Borel 
subgroup B of G. The projection π : G/B → G/P is a locally trivial fiber bundle, with 
smooth fibers isomorphic to P/B. Schubert varieties and fixed points of G/P are indexed 
by cosets W/WP , where WP ⊂ W is the Weyl group of P . The projection sends a point 
wB to π(wB) = [w]P , where the coset [w] is in W/WP . Any w ∈ W can be uniquely 
decomposed into wminwP for some wP ∈ WP , where wmin is the minimal representative 
for [w]. With this notation, we have π−1Ω[w] = Ωwmin , so the restriction Ωwmin → Ω[w] is 
also a fiber bundle with smooth fibers. In particular, the multiplicity of a point p[v] ∈ Ω[w]
is the same as that of pv ∈ Ωwmin .

Type A. Let w be a vexillary permutation in S#
n , with triple (kkk, ppp, qqq). The partial fixed 

flag F q1 ⊂ · · · ⊂ F qs ⊂ V suffices to define the Schubert variety Ωw. We also consider 
the partial flag variety Fl(ppp; V ) parametrizing flags Ep1 ⊂ · · · ⊂ Eps

⊂ V , with the 
projection π : Fl(V ) → Fl(ppp; V ). By the main fact about essential sets—and as noted in 
the previous paragraph—we have Ωw = π−1Ω[w], where Ω[w] ⊂ Fl(ppp; V ) is the subvariety 
defined by the same conditions, dim(Epi

∩ F qi) ≥ ki for 1 ≤ i ≤ s. This is because, by 
construction, a vexillary permutation w coming from (kkk, ppp, qqq) is minimal in its coset for 
the projection to Fl(ppp; V ).

Since π is a smooth morphism, this reduces the study of singularities of Ωw to those 
of Ω[w]. (The analogous statements hold, for the same reasons, in other types.)

Given ppp and qqq, let ri = pi + n − qi, and write rrr = (r1, . . . , rs). We have an embedding

Σ: Fl(ppp;V ) ↪→ Fl(rrr;V ⊕ V ) (16)

defined by sending
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Ep1 ⊂ · · · ⊂ Eps
⊂ V to Ep1 ⊕ F q1 ⊂ · · · ⊂ Eps

⊕ F qs ⊂ V ⊕ V.

We call this the direct sum embedding.
Let Δ = {(v, v) | v ∈ V } ⊂ V ⊕ V be the diagonal subspace, and consider the locus

Ωw−1
λ

= {G• | dim(Gri ∩ Δ) ≥ ki for 1 ≤ i ≤ s}

in Fl(V ⊕V ). Indeed, Ωw−1
λ

is exactly the Schubert variety in Fl(V ⊕V ) labeled by w−1
λ : 

using any fixed flag in V ⊕ V which contains Δ as its n-dimensional component, this 
locus is the Schubert variety associated to the inverse of the Grassmannian permutation 
wλ ∈ S2n of descent n, where λ is the shape of w, so λki

= qi − pi + ki. The Schubert 
variety Ω[w−1

λ ] ⊂ Fl(rrr; V ⊕ V ) is defined by the same conditions. So Ωw−1
λ

= Π−1Ω[w−1
λ ], 

where Π: Fl(V ⊕ V ) → Fl(rrr; V ⊕ V ) is the projection.
The key fact about the direct sum embedding is this: for the vexillary permutation w

with triple (kkk, ppp, qqq) and shape λ,

Ω[w] = Σ−1Ω[w−1
λ ] (17)

in Fl(ppp; V ). All this can be summarized by the diagrams of fiber squares:

Fl(ppp;V ) Fl(rrr;V ⊕ V )

Ω[w] Ω[w−1
λ ]

Σ

Ωw Fl(V )

Ω[w] Fl(ppp;V )

π

Ωw−1
λ

Fl(V ⊕ V )

Ω[w−1
λ ] Fl(rrr;V ⊕ V ).

Π

Type C. Let w be a vexillary signed permutation in W#
n , with (type C) triple (kkk, ppp, qqq). 

We use the notation FlC(ppp, V ) to denote the partial isotropic flag variety of subspaces 
Ep1 ⊂ · · · ⊂ Eps

⊂ V , with dimEpi
= n + 1 − pi, all isotropic with respect to the 

symplectic form ω. Similarly, we have the fixed isotropic partial flag Fq1 ⊂ · · · ⊂ Fqs ⊂ V .
On the vector space V ⊕ V there is a canonical symplectic form 〈 〈 , 〉 〉, defined by

〈〈v1 ⊕ v2, w1 ⊕ w2〉〉 = 〈v1, w1〉 − 〈v2, w2〉,

where 〈 , 〉 is the given symplectic form on V . This has the property that E⊕F ⊂ V ⊕V

is isotropic whenever both E, F ⊂ V are isotropic, and also that the diagonal subspace 
Δ ⊂ V ⊕ V is isotropic.



D. Anderson et al. / Advances in Mathematics 435 (2023) 109366 23
The direct sum embedding is defined as before:

Σ: FlC(ppp;V ) ↪→ FlC(rrr;V ⊕ V )

sends

Ep1 ⊂ · · · ⊂ Eps
⊂ V to Ep1 ⊕ Fq1 ⊂ · · · ⊂ Eps

⊕ Fqs ⊂ V ⊕ V.

Here ri = pi + qi − 1, and in accordance with our type C conventions, the subspace 
Gri ⊆ V ⊕ V has dimension 2n + 1 − ri = (n + 1 − pi) + (n + 1 − qi).

Also as before, for a strict partition λ, we have the locus

Ωw−1
λ

= {G• | dim(Gri ∩ Δ) ≥ ki for 1 ≤ i ≤ s}, (18)

an inverse-Grassmannian Schubert variety in FlC(V ⊕ V ), and

Ω[w] = Σ−1Ω[w−1
λ ]. (19)

The type C direct sum embedding is compatible with the type A one, requiring only 
notational changes. That is, having fixed our isotropic flag F•, the diagram

Fl(p̃pp;V ) Fl(r̃rr;V ⊕ V )

FlC(ppp;V ) FlC(rrr;V ⊕ V )

Σ

Σ

(20)

commutes, where p̃i = n + 1 − pi and r̃i = 2n + 1 − ri (so these index the dimensions of 
the subspaces parametrized by the partial flags).

Later it will be useful to embed isotropic flag varieties in type A flag varieties by 
remembering the coisotropic spaces as well, so FlC(ppp; V ) ↪→ Fl(p̃pp; V ) sends Ep1 ⊂
· · · ⊂ Eps

to the flag Ep1 ⊂ · · · ⊂ Eps
⊂ E⊥

ps
⊂ · · · ⊂ E⊥

p1
. In this case, 

p̃pp = (p̃1, . . . , ̃ps, ̃ps+1, . . . , ̃p2s), where p̃i = n +1 −pi for 1 ≤ i ≤ s, and p̃i = n −1 +p2s+1−i

for s + 1 ≤ i ≤ 2s. Also extending the fixed flag F• to include coisotropic spaces, this 
embedding is compatible with direct sum in the same way, as indicated by diagram (20).

Type D. The construction is exactly the same as type C, using the symmetric form 〈 〈 , 〉 〉
on V ⊕ V defined by

〈〈v1 ⊕ v2, w1 ⊕ w2〉〉 = 〈v1, w1〉 − 〈v2, w2〉,

where 〈 , 〉 is the given symmetric form on V .
The direct sum embedding Σ: FlD(ppp; V ) ↪→ FlD(rrr; V ⊕ V ) works as for type C, 

where this time ri = pi + qi. We have the locus Ω[w−1] in FlD(rrr; V ⊕ V ) as in (18), with 

λ
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Ω[w] = Σ−1Ω[w−1
λ ]. And this embedding is compatible with the type A one, just as in the 

diagram (20).

Type B. Given an odd-dimensional vector space V with symmetric bilinear form, and a 
vexillary permutation w ∈ W#

n with (type B) triple (kkk, ppp, qqq), the direct sum map is

Σ: FlB(ppp;V ) → FlD(rrr;V ⊕ V ),

where the symmetric form 〈 〈 , 〉 〉 on V ⊕ V is defined as before. Here ri = pi + qi − 1. 
Note that, in contrast to types C and D, this takes a type B flag variety to a type D one. 
Similarly, we have the locus Ω[w−1

λ ] inside FlD(rrr; V ⊕V ), defined by the same conditions 
as in type C (18).

7. Isomorphisms of Kazhdan-Lusztig varieties

Recall that X◦
v denotes an opposite Schubert cell, the B-orbit of a fixed point pv, so it 

is an affine space of dimension �(v), and Ωw is a Schubert variety, of codimension �(w).
For any v ∈ W , an affine neighborhood of pv is given by vΩ◦

id. To study the Schubert 
variety Ωw locally at the point pv (w ≤ v), we only need to understand the affine variety 
Ωw ∩ vΩ◦

id. However, as observed by Kazhdan and Lusztig [16, Lemma A.4], there is an 
isomorphism

Ωw ∩ vΩ◦
id
∼= (Ωw ∩X◦

v ) ×Adim(G/B)−�(v).

So we study the affine variety Ωw ∩X◦
v , often called a Kazhdan-Lusztig variety.

In our setting, w = w(τ ) is the vexillary (signed) permutation associated to a triple 
τ = (kkk, ppp, qqq), and v ≥ w. Recall that we defined a sequence kkk′ = (k′1 < · · · < k′s)
by setting k′i = kv(pi, qi) for each i, obtaining a weak triple τ ′ = (kkk′, ppp, qqq). We have 
partitions λ and μ associated to τ and τ ′, respectively; λ is the shape of w, and μ is the 
outer shape of the pair v ≥ w. These partitions, in turn, have associated Grassmannian 
(signed) permutations wλ and wμ.

Theorem 7.1. With notation as above, so w is vexillary and v ≥ w, with corresponding 
partitions μ ⊇ λ, we have an isomorphism

Ωw ∩X◦
v
∼= (Ωw−1

λ
∩X◦

w−1
μ

) ×A�(v)−|μ|.

Proof. We begin the proof with some reductions. First, consider the projection to the 
partial flag variety π : G/B → G/Pppp, where G/Pppp parametrizes partial flags Ep1 ⊆
· · · ⊆ Eps

⊆ V . (For example, in type A, Pppp is block-upper-triangular, with blocks 
of size p1, p2 − p1, etc.) We have Ωw = π−1Ω[w], and the map X◦

v → X◦
[v] identifies 

X◦
v
∼= X◦

[v] ×A�(v)−�(vmin), where vmin is the minimal representative of the coset [v]. This 
shows
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Ωw ∩X◦
v
∼= (Ω[w] ∩X◦

[v]) ×A�(v)−�(vmin).

So from now on we may assume v = vmin, i.e., v is minimal in its coset with respect to 
Pppp.

Next we turn to the direct sum embedding. Let us write G/Prrr for the target of Σ. 
(So in type A, G = GL2n and G/Prrr is Fl(rrr; V ⊕ V ), where ri = pi + n − qi.) With our 
assumption that v = vmin, the composition

X◦
v

π−→ X◦
[v]

Σ−→ G/Prrr

is an embedding, since the projection is an isomorphism.
As in Section 6, let Ωw−1

λ
⊂ G/Prrr be defined by intersection with the diagonal sub-

space Δ ⊂ V ⊕ V . And let Q ⊂ G be the parabolic subgroup preserving Δ, so Q acts 
on Ωw−1

λ
. (Choosing an appropriate basis for V ⊕ V , this subgroup, Q is given by block 

lower-triangular matrices in G.)
Since Σ−1Ωw−1

λ
= Ωw, we have

X◦
v ∩ Ωw

∼= Σ(X◦
v ) ∩ Ωw−1

λ
.

Then by Lemma 7.2 below, the statement follows. In fact, because Q preserves Ωw−1
λ

, and 
the unipotent subgroup U is isomorphic to affine space, the map of the lemma induces 
an isomorphism

Σ(X◦
v ) ∩ Ωw−1

λ

∼= (X◦
w−1

μ
∩ Ωw−1

λ
) ×A�(v)−|μ|,

as required. �
We continue to assume v = vmin.

Lemma 7.2. There is an element g ∈ Q and a unipotent subgroup U ⊂ Q such that the 
multiplication map defines an isomorphism of affine spaces

U ×X◦
w−1

μ

∼−→ Σ(X◦
v ), (21)

(u, x) �→ u · g · x.

To prove the lemma, we carry out computations in matrices: the argument consists of 
keeping track of reduction to row echelon form. Nearly all the essential details appear in 
type A, so we will describe that case carefully, indicating what changes for other types.

7.1. Type A

Recall that λki
= qi − pi + ki, with the other parts filled in minimally, and similarly 

μk′ = qi − pi + k′i. We set ri = pi + n − qi. The target of Σ is the partial flag variety 

i
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Fl(rrr; V ⊕V ) = G/Prrr, where G = GL2n, and Prrr is the block-upper-triangular parabolic 
subgroup stabilizing a flag. To establish the isomorphism (21), we first represent Σ(X◦

v )
by 2n × 2n matrices.

Choose a basis eee1, . . . , eeen for V , such that F qi is the span of eeen, . . . , eeeqi+1. Start with 
the standard n ×n matrix representatives for X◦

v . This is the B-orbit of the permutation 
matrix for v, so matrices for X◦

v have 1’s in positions (v(j), j), free entries (to be written 
as ∗’s) in positions (i, j) such that v(j) > i and v−1(i) > j, and 0’s elsewhere. Say the 
columns of this n × n matrix are ccc1, . . . , cccn.

In the course of the proof, we will use a labeling of the free entries in such matrices, 
coming from the positions (qi, pi) as follows. Start with the northwest submatrix whose 
southeast corner lies at (q1, p1). Assign the label ‘1’ to each ∗ in this submatrix not 
having a pivot 1 in its row or column, within this same submatrix. Continue for each 
i from 1 to s: assign label ‘i’ to each previously unlabeled ∗ in the northwest qi × pi
submatrix, if there is no pivot 1 lying in the same row or column within the submatrix. 
Some entries may be left unlabeled.

For a running example, let us take τ = (kkk, ppp, qqq) = (1 2 3 5 6, 3 5 5 6 7, 6 6 4 2 1), so 
w = 1 3 7 5 8 4 2 6 9. And v = 6 7 9 3 8 4 5 1 2 has kkk′ = (2 3 4 6 7). So

τ ′ = (kkk′, ppp,qqq) = (2 3 4 6 7, 3 5 5 6 7, 6 6 4 2 1),

and μ = (5, 5, 4, 3, 2, 2, 1). It is worth noting that in this example, the triple τ is in fact 
not essential, since the last condition is redundant, and λ6 = 1 − 7 + 6 = 0. So, one can 
omit the final entries in τ to get an essential triple. In Fl(ppp; V ), we have:

X◦
v =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗3 ∗1 ∗1 ∗4 ∗2 ∗4 ∗5� 1 0
∗3 ∗1 ∗1 ∗4 ∗2 ∗4� ∗ 0 1
∗ ∗1 ∗1 1 0 0 0 0 0
∗3 ∗1 ∗1 0 ∗2� 1 0 0 0
∗ ∗1 ∗1 0 ∗2 0 1 0 0
1 0 0� 0 0� 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 ∗ 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(The conditions imposed by intersecting with Ω[w] say: the northwest 6 × 3 submatrix 
has rank ≤ 2; the northwest 6 ×5 submatrix has rank ≤ 3; the northwest 4 ×5 submatrix 
has rank ≤ 2; the northwest 2 × 6 submatrix has rank ≤ 1; and the northwest 1 × 7
submatrix has rank 0. We will not need this in what follows, except to observe that these 
conditions are preserved by all operations.)

Lemma 7.3. There are exactly |μ| labeled entries.
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Proof. From the definition of kkk′, there are pi − k′i pivot 1’s in the northwest qi × pi
submatrix representing X◦

v . So there are qi − pi + k′i = μk′
i

rows having no pivot. And 
there are k′i columns having no pivot, of which k′i−1 were labeled in previous steps. So 
one sees (k′i − k′i−1)μk′

i
entries labeled ‘i’. Summing over i proves the lemma. �

Using the basis (eee1, 0), . . . , (eeen, 0), (0, eee1), . . . , (0, eeen) for V ⊕V , matrix representatives 
for the embedded cell Σ(X◦

v ) have columns

(ccc1, 0), . . . , (cccp1 , 0), (0, eeeq1+1), . . . , (0, eeen),

(cccp1+1, 0), . . . , (cccp2 , 0), (0, eeeq2+1), . . . , (0, eeeq1),

· · ·

(cccps+1, 0), . . . , (cccn, 0), (0, eee1), . . . , (0, eeeqs).

These columns are separated into s + 1 blocks, as indicated. We will make the labels 
follow corresponding entries as they are embedded.

Continuing our example, the embedding in Fl(rrr; V ⊕ V ) is

Σ(X◦
v ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗3 ∗1 ∗1 0 0 0 ∗4 ∗2 0 0 ∗4 0 0 ∗5 0 1 0 0
∗3 ∗1 ∗1 0 0 0 ∗4 ∗2 0 0 ∗4 0 0 ∗ 0 0 1 0
∗ ∗1 ∗1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
∗3 ∗1 ∗1 0 0 0 0 ∗2 0 0 1 0 0 0 0 0 0 0
∗ ∗1 ∗1 0 0 0 0 ∗2 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 ∗ 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since we will impose conditions on intersections with Δ, we change to a basis bet-
ter adapted to the diagonal subspace. With respect to the basis (eee1, 0), . . . , (eeen, 0), 
(eee1, eee1), . . ., (eeen, eeen), the matrix representatives for Σ(X◦

v ) have columns

(ccc1, 0), . . . , (cccp1 , 0), (−eeeq1+1, eeeq1+1), . . . , (−eeen, eeen),
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(cccp1+1, 0), . . . , (cccp2 , 0), (−eeeq2+1, eeeq2+1), . . . , (−eeeq1 , eeeq1),
· · ·
(cccps+1, 0), . . . , (cccn, 0), (−eee1, eee1), . . . , (−eeeqs , eeeqs).

In our running example, this is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗3 ∗1 ∗1 0 0 0 ∗4 ∗2 0 0 ∗4 0 0 ∗5 0 1 0 −1
∗3 ∗1 ∗1 0 0 0 ∗4 ∗2 0 0 ∗4 0 0 ∗ −1 0 1 0
∗ ∗1 ∗1 0 0 0 1 0 0 0 0 −1 0 0 0 0 0 0
∗3 ∗1 ∗1 0 0 0 0 ∗2 0 0 1 0 −1 0 0 0 0 0
∗ ∗1 ∗1 0 0 0 0 ∗2 −1 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 ∗ 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now we work with this matrix representation of Σ(X◦
v ). Column operations within the 

s +1 blocks do not change the underlying partial flag in Fl(rrr; V ⊕V ); nor do “rightward” 
column operations, which take a column from one block and add it to a column from a 
block to the right—these are precisely the operations coming from right-multiplication 
by Prrr. (Sometimes we’ll call these admissible column operations.)

Recall that Σ(X◦
v ) ∩Ωw−1

λ
is defined by imposing conditions on intersections with Δ. 

In our chosen basis, these are equivalent to requiring that, for each i, the northwest n ×ri
submatrix of Σ(X◦

v ) has rank at most ri − ki. The subgroup Q ⊂ GL2n preserving Δ
consists of block lower-triangular matrices, with two blocks of size n. The action of Q
by left-multiplication (i.e., row operations) preserves Ωw−1

λ
. Since the conditions defining 

Ωw−1
λ

concern only the first n rows, from now on we focus on the top n × 2n submatrix. 
We will use admissible column operations and row operations from Q to reduce Σ(X◦

v )
to echelon form.

Consider the n × 2n matrix representing Σ(X◦
v ), divided into s + 1 blocks as before, 

so the ith block is on columns ri−1 +1 through ri (with the convention r0 = 0). We take 
this matrix to be generic, i.e., the ∗ entries are filled by independent variables. In our 
example, it looks like this:
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗3 ∗1 ∗1 0 0 0 ∗4 ∗2 0 0 ∗4 0 0 ∗5 0 1 0 −1
∗3 ∗1 ∗1 0 0 0 ∗4 ∗2 0 0 ∗4 0 0 ∗ −1 0 1 0
∗ ∗1 ∗1 0 0 0 1 0 0 0 0 −1 0 0 0 0 0 0
∗3 ∗1 ∗1 0 0 0 0 ∗2 0 0 1 0 −1 0 0 0 0 0
∗ ∗1 ∗1 0 0 0 0 ∗2 −1 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 ∗ 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(22)

Claim 1. The submatrix formed by the first i blocks—i.e., on the first ri columns—has 
rank at least n − μk′

i
. Furthermore, block i has minimal rank μk′

i−1
− μk′

i
. (And block 1

has minimal rank n − μk′
1
.)

Proof. Consider this n × ri matrix. By construction, each column has a “pivot” 1 or −1
in it, so there are ri such entries. Also by construction, there are exactly k′i rows which 

contain both a 1 and a −1. In such rows, mark the first (leftmost) of them as a pivot. So 

there are ri− k′i = pi +n − qi − k′i = n −μk′
i

pivots. Without changing the rank, we may 

rearrange and scale columns so that these pivots are all 1’s and proceed NW to SE in 

the first n − μk′
i

columns. The square submatrix on these columns, and rows containing 

their pivots, are upper unitriangular. The claim about the rank follows.
An analogous argument, applied to individual blocks, establishes the claim about the 

rank of block i. That is, we consider the n × (ri − ri−1) matrix of block i. Each column 

has a pivot 1 or −1 so that there are ri−ri−1 such entries. There are precisely (k′i−k′i−1)
rows among the k′i rows having both a 1 and a −1 in the n × ri matrix. This implies 
that there are exactly (ri − ri−1) − (k′i − k′i+1) = μk′

i−1
− μk′

i
such pivots. One concludes 

as before. �

Next we use row operations, and admissible column operations, on this n ×2n matrix to 

put it into echelon form, keeping track of where the free entries end up. These operations 
preserve ranks of each block. So in its echelon form, this means the ith block has an 

identity matrix of size μk′
i−1

− μk′
i

in its northwest corner, and its free entries must fit 
inside the complementary southeast corner, which has size μk′

i
· (k′i − k′i−1). We will see 

that, in fact, the entries labeled i land in block i of this echelon form.
That is, the reduced matrices all belong to X◦

w−1
μ

, in its usual matrix form. In our 
example, X◦

−1 is this:

wμ
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 ∗1 ∗1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 ∗1 ∗1 0 ∗2 1 0 0 0 0 0 0 0 0 0
0 0 0 0 ∗1 ∗1 0 ∗2 0 ∗3 1 0 0 0 0 0 0 0
0 0 0 0 ∗1 ∗1 0 ∗2 0 ∗3 0 ∗4 ∗4 1 0 0 0 0
0 0 0 0 ∗1 ∗1 0 ∗2 0 ∗3 0 ∗4 ∗4 0 ∗5 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (23)

The key point now is that the labeled free entries of (22) are exactly those which 
survive in echelon form (23); the unlabeled ones are eliminated by upper-triangular row 
operations, accounting for the unipotent group U .

Before reduction, the free entries of (22) occur as one of the following possible types:

(a)

⎡⎢⎣ ∗ · · · −1
...

1

⎤⎥⎦ (within a block), or 

⎡⎢⎣ ∗ · · · ±1 · · · ∓1
...

...

1 · · · · · · −1

⎤⎥⎦;

or

(b)

⎡⎢⎣ ∗ · · · · · · ±1
...

...

1 · · · −1

⎤⎥⎦ or 

⎡⎢⎣ ∗ · · · ±1
...

−1 · · · 1

⎤⎥⎦.

Case (a) corresponds to unlabeled entries. Here the free entry ∗ is eliminated by row 
operations, so such entries are absorbed into the unipotent subgroup U . Carrying out 
these operations, we obtain an isomorphism

Σ(X◦
v ) ∼= U ×M,

where M is the locus of matrices in Σ(X◦
v ) having free entries only of type (b) (the 

labeled entries).
In case (b), the free entry is not eliminated by row operations, and survives in the 

reduced echelon form. So there is an isomorphism M → M ′, given by left-multiplication 
by an element g ∈ Q, where M ′ is a locus of matrices in echelon form, of the type 
identified above (as in (23)).

So to complete the proof of Lemma 7.2, it remains to see that M ′ = X◦
w−1

μ
. Since both 

are affine spaces, and M ′ ⊆ X◦
w−1

μ
by the above considerations, it suffices to compute 

dimM ′, that is, the number of inversions of type (b).

Claim 2. There are precisely |μ| free entries of type (b).
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Indeed, the entries of type (b) are exactly the labeled entries, so the claim follows 
from Lemma 7.3.

This completes the proof in type A. Before turning to other types, we observe that the 
row operations used in the proof—left multiplication by elements of Q—actually come 
from the subgroup GL(V ) = GL(V ⊕ 0) ⊂ Q ⊂ GL(V ⊕ V ).

7.2. Type C

The isomorphisms in other (classical) types are constructed exactly as in type A. 
In fact, via standard embeddings of isotropic flag varieties in the usual (type A) flag 
varieties, the row operations described above for type A induce the required isomorphisms 
in other types. We will spell this out in detail for type C; types D and B require only 
minor adjustments.

In outline, here is how we proceed. The embedding FlC(ppp; V ) ↪→ Fl(p̃pp; V ) also de-
termines an embedding of Schubert cells X◦

v ↪→ X◦
ṽ such that X◦

v = X◦
ṽ ∩ FlC(ppp; V )

(usually not transversally), and similarly one has Ωw ↪→ Ωw̃ with Ωw = Ωw̃ ∩FlC(ppp; V ).
As noted in §6, these embeddings are compatible with the direct sum map. For a 

triple τ = (kkk, ppp, qqq) of type C, with corresponding strict partition λ, there is an extended 
triple τ̃ = (k̃kk, ̃ppp, ̃qqq) of type A, with corresponding partition λ̃. These have corresponding 
vexillary (signed) permutations w and w̃. For v ≥ w, we have a type C weak triple 

τ ′ = (kkk′, ppp, qqq) and an extension to a type A weak triple τ̃ ′ = (k̃kk
′
, ̃ppp, ̃qqq). We will consider 

matrix representatives for Σ(X◦
v ) ⊂ Σ(X◦

ṽ ) inside FlC(rrr; V ⊕ V ) ⊂ Fl(r̃rr; V ⊕ V ). The 
isomorphism of the type A Schubert cells Σ(X◦

ṽ ) ∼= Ũ ×Xw−1
μ̃

, described above, induces 
the required isomorphism Σ(X◦

v ) ∼= U×Xw−1
μ

. As before, this comes from row operations 
coming from left multiplication by a copy of GL(V ) ⊂ GL(V ⊕V ). Using an appropriate 
choice of basis—adapted to the diagonal subspace Δ ⊂ V ⊕ V , as before—this copy of 
GL(V ) lies inside the subgroup preserving the bilinear form 〈 〈 , 〉 〉 on V ⊕ V .

Now let us spell out the details. Given a type C triple τ = (kkk, ppp, qqq), the corresponding 
strict partition has λki

= pi + qi − 1, with the other parts filled in minimally so that 
λ1 > · · · > λs. Similarly, given τ ′ = (kkk′, ppp, qqq), we have μk′

i
= pi + qi − 1. We set 

ri = pi + qi − 1. The target of the direct sum map is FlC(rrr; V ⊕ V ) = G/Prrr, where 
G = Sp4n and Prrr is the block-upper-triangular matrix preserving a standard isotropic 
flag.

As in type A, we start by choosing an appropriate basis. Write eeen, . . . , eee1, eee1, . . . , eeen for 
the standard basis of V , as in our conventions for type C, so Fqi is the span of eeen, . . . , eeeqi . 
The standard 2n × 2n matrix representatives for X◦

v are given by the B+-orbit of the 
permutation matrix for the signed permutation v (extended to a permutation in S2n). 
Such representatives have 1’s in positions (v(j), j) (for j ∈ {n, . . . , 1, 1, . . . , n}, and in 
positions (i, j) such that v(j) > i and v−1(i) > j, the entries are either free (written ∗) 
or constrained by the isotropic condition (written •). Elsewhere there are 0’s. See, e.g., 
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[9, §6] for this way of parametrizing Schubert cells (but note the conventions there are 
different from ours).

These matrix representatives naturally embed X◦
v ⊂ FlC(ppp; V ) ⊂ Fl(p̃pp; V ), where

p̃i =
{
n + 1 − pi for 1 ≤ i ≤ s;
n− 1 + p2s+1−i for s + 1 ≤ i ≤ 2s.

These numbers are the dimensions of Ep and E⊥
p . The labeling of ∗ and • entries is done 

just as in type A.
For our running example, take n = 5, and let τ = (kkk, ppp, qqq) = (1 2, 3 1, 3 2), so 

w = 21 3 4 5. With v = 1 3 5 4 2, we find kkk′ = (2 3), so

τ ′ = (kkk′, ppp,qqq) = (2 3, 3 1, 3 2)

and μ = (6, 5, 2). The isotropic flag E3 ⊂ E1 ⊂ V extends to E3 ⊂ E1 = E⊥
1 ⊂ E⊥

3 ⊂ V , 
and p̃pp = (3 5 5 7). Matrix representatives are

X◦
v =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗2 ∗1 ∗1 • •3 •4 •4 1 0 0
∗2 ∗1 •1 • •3 •4 •4 0 1 0
∗ ∗1 ∗1 1 0 0 0� 0 0 0
∗2 •1 •1 0 •3� • • 0 0 1
∗ ∗1 ∗1 0 1 0 0 0 0 0
∗2 ∗1 ∗1 0 0� 1 0 0 0 0
1 0 0� 0 0 0 0 0 0 0
0 ∗ ∗ 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(The conditions imposed by intersecting with Ω[w], namely (1) dim(E3∩F3) ≥ 1 and (2) 
dim(E1∩F2) ≥ 2, say that (1) the northwest 7 ×3 submatrix has rank at most 3 −1 = 2, 
and (2) the northwest 6 × 5 submatrix has rank at most 5 − 2 = 3. Again, we will not 
need this in the proof, except to note these conditions are preserved.)

Given τ ′ = (kkk′, ppp, qqq), the extension τ̃ ′ = (k̃kk
′
, ̃ppp, ̃qqq) is defined by

q̃i =
{
n− 1 + qi for 1 ≤ i ≤ s;
n + 1 − q2s+1−i for s + 1 ≤ i ≤ 2s;

and

k̃′i =
{
k′i for 1 ≤ i ≤ s;
p + q + k′ − 2 for s + 1 ≤ i ≤ 2s.
2s+1−i 2s+1−i 2s+1−i
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The numbers k̃′i are computed using (Ep ∩Fq)⊥ = E⊥
p +F⊥

q for isotropic spaces Ep and 
Fq. So if dim(Ep ∩ Fq) = k, then dim(E⊥

p + F⊥
q ) = 2n − k; together with the formulas 

for dim(E⊥
p ) and dim(F⊥

q ), this implies dim(E⊥
p ∩ F⊥

q ) = p + q + k − 2.
When ps = qs = 1, the formulas produce (k̃′s+1, ̃ps+1, ̃qs+1) = (k̃′s, ̃ps, ̃qs) and we 

usually omit this repetition. The partition μ̃ is the one associated to the (type A) triple 
τ̃ ′.

In our running example, τ ′ = (2 3, 3 1, 3 2), and τ̃ ′ = (2 3 4 6, 3 5 5 7, 7 6 4 3), so 
μ̃ = (6, 6, 4, 3, 2, 2).

There is some flexibility in the placement of • entries—that is, in deciding which 
entries are dependent on the others. We will exchange •i in position (a, b) with ∗j in 
position (a′, b′) whenever i < j, v(b) = a′, and v(b′) = a.

X◦
v =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

•2 ∗1 ∗1 • •3 •4 •4 1 0 0
•2 ∗1 •1 • •3 •4 •4 0 1 0
∗ ∗1 ∗1 1 0 0 0� 0 0 0
∗2 ∗1 ∗1 0 •3� • • 0 0 1
∗ ∗1 ∗1 0 1 0 0 0 0 0
∗2 ∗1 ∗1 0 0� 1 0 0 0 0
1 0 0� 0 0 0 0 0 0 0
0 ∗ ∗ 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Lemma 7.4. There are |μ| labeled free entires.

Proof. The proof is similar to type A. In fact, Lemma 7.3 shows there are |μ̃| labeled
entries ∗ and •. The isotropic conditions account for the •’s: listing ks columns in any 
order compatible with the labels (so columns with ∗1 come first, then ∗2, etc.), there are 
k − 1 entries • in the kth column. For 1 ≤ i ≤ s, then, there are

ki∑
k=ki−1+1

(μ̃k − (k − 1)) =
ki∑

k=ki−1+1

μk

free entries ∗i. Summing over i proves the lemma. �

Using the basis (eeen, 0), . . . , (eeen, 0), (0, eeen), . . . , (0, eeen) for V ⊕V , matrix representatives 
for Σ(X◦

v ) ⊂ FlC(rrr; V ⊕ V ) ⊂ Fl(r̃rr; V ⊕ V ) are given by a 4n × 4n matrix, similar to 
type A. In our example, this is



34 D. Anderson et al. / Advances in Mathematics 435 (2023) 109366
Σ(X◦
v ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

• ∗ ∗ 0 0 0 • • 0 0 0 0 • • 0 0 0 1 0 0
• ∗ • 0 0 0 • • 0 0 0 0 • • 0 0 0 0 1 0
∗ ∗ ∗ 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ 0 0 0 0 • 0 0 0 0 • • 0 0 0 0 0 1
∗ ∗ ∗ 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 ∗ ∗ 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(Lines are added as visual aids, to distinguish both the blocks corresponding to the 
partial flag variety Fl(r̃rr; V ⊕ V ) as before, as well as the axes of symmetry arising from 
the isotropic conditions.)

Next, we change basis to work with one which is both adapted to Δ ⊂ V ⊕V , and with 
respect to which the bilinear form 〈 〈 , 〉 〉 has antidiagonal Gram matrix. A convenient 
choice is

1
2(eeen,−eeen), . . . , 1

2(eeen,−eeen), (eeen, eeen), . . . , (eeen, eeen). (24)

(Here we require char(K) �= 2.) In this basis, the top half of the matrix for Σ(X◦
v ) has a 

similar form to the one described above in type A. In our example, it is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

• ∗ ∗ 0 0 0 • • 0 0 0 0 • • −1 0 0 1 0 0
• ∗ • 0 0 0 • • 0 0 0 0 • • 0 −1 0 0 1 0
∗ ∗ ∗ 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0
∗ ∗ ∗ 0 0 0 0 • 0 0 0 −1 • • 0 0 0 0 0 1
∗ ∗ ∗ 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 ∗ ∗ −1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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The bottom half of such a matrix has many more nonzero entries than the one we used 
in type A, but only the top half will be relevant.

The key features of this basis are:

• The diagonal subspace Δ is spanned by the last 2n vectors of the basis, so conditions 
on dim(Gri ∩Δ) are equivalent to rank conditions on the first 2n rows of the matrix 
representatives.

• The first 2n vectors span a subspace Δ∗ ⊂ V ⊕V which is also isotropic with respect 
to 〈 〈 , 〉 〉, so a copy of GL2n ⊂ Sp4n acts by (arbitrary) row operations on the first 
2n rows (combined with compensating simultaneous row operations on the last 2n
rows).

In our example, the conditions imposed by intersecting with Ω[w−1
λ ] say that the northwest 

10 × 6 submatrix has rank at most 6 − 1 = 5, and the northwest 10 × 9 submatrix has 
rank at most 9 − 2 = 7.

With this in mind, together with the observation made after the conclusion of the 
type A argument, we may preform the same row operations as in type A, and end with 
matrix representatives lying in Σ(X◦

w−1
μ̃

). But since each row operation preserves 〈 〈 , 〉 〉, 
the result in fact lies in the subset Σ(X◦

w−1
μ

) ⊆ Σ(X◦
w−1

μ̃

). In our running example, these 

are matrices of the following form:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 ∗ ∗ 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 ∗ ∗ 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 ∗ ∗ 0 0 ∗ 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 ∗ ∗ 0 0 ∗ 0 • 1 0 0 0 0 0 0 0 0
0 0 0 0 ∗ ∗ 0 0 • 0 • 0 • • 1 0 0 0 0 0
0 0 0 0 ∗ • 0 0 • 0 • 0 • • 0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

To complete the proof of Lemma 7.2 in type C, we observe that a counting argument 
analogous to the one used in type A shows that all such matrices appear. In addition to 
the free entries ∗ of type (a) and (b), which appear in configurations exactly as in type 
A, the • entries appear in two types:

(a’)

⎡⎢⎣ • · · · −1
...

1

⎤⎥⎦ (within a block), or 

⎡⎢⎣ • · · · ±1 · · · ∓1
...

...

1 · · · · · · −1

⎤⎥⎦;

or
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(b’)

⎡⎢⎣ • · · · · · · ±1
...

...

1 · · · −1

⎤⎥⎦ or 

⎡⎢⎣ • · · · ±1
...

−1 · · · 1

⎤⎥⎦.

Just as in type A, row operations eliminating type (a) (and (a’)) entries are absorbed 
into the unipotent group U . Claim 2 shows that there are |μ̃| entries of types (b) and 
(b’), combined, and that these are precisely the labeled entries. Then Lemma 7.4 shows 
that there are |μ| (free) entries of type (b), as required.

7.3. Type D

Only a few changes are required to modify the type C argument into one which 
works for type D. Given a type D triple τ = (kkk, ppp, qqq), the corresponding partition has 
λki

= pi +qi, and similarly, τ ′ = (kkk′, ppp, qqq) has partition with μk′
i
= pi +qi. The extension 

of τ ′ is τ̃ ′ = (k̃kk
′
, ̃ppp, ̃qqq), with

p̃i =
{
n− pi for 1 ≤ i ≤ s;
n + p2s+1−i for s + 1 ≤ i ≤ 2s;

q̃i =
{
n + qi for 1 ≤ i ≤ s;
n− q2s+1−i for s + 1 ≤ i ≤ 2s;

and

k̃′i =
{
k′i for 1 ≤ i ≤ s;
p2s+1−i + q2s+1−i + k′2s+1−i for s + 1 ≤ i ≤ 2s.

The reasons for these numbers are the same as in type C. In the case ps = qs = 0, the 
formulas produce (k̃′s+1, ̃ps+1, ̃qs+1) = (k̃′s, ̃ps, ̃qs) and as in type C, we usually omit this 
repetition.

The matrix manipulations are essentially the same as in type C. We briefly illustrate 
with an example, for n = 5. Take τ = (1 2, 2 0, 2 1), so w = 21 3 4 5 and λ = (4, 1). 
With v = 1 3 5 4 2, we find kv(q1, p1) = 2 and kv(q2, p2) = 3. So we get a weak triple 
τ ′ = (kkk′, ppp, qqq) = (2 3, 2 0, 2 1), with μ = (5, 4, 1, 0). Then τ̃ ′ = (2 3 4 6, 3 5 5 7, 7 6 4 3), 
with μ̃ = (6, 6, 4, 3, 2, 2)).
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In matrices,

X◦
v =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ • • • • • 1 0 0
∗ • • • • • • 0 1 0
∗ ∗ ∗ 1 0 0 0 0 0 0
• • • 0 • • • 0 0 1
∗ ∗ ∗ 0 0 1 0 0 0 0
∗ ∗ ∗ 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 ∗ ∗ 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Under the direct sum embedding, after re-arranging the • entries and changing to the 
basis (24), the top half of the matrix representing Σ(X◦

v ) is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

• ∗ • 0 0 0 • • 0 0 0 0 • • −1 0 0 1 0 0
• • • 0 0 0 • • 0 0 0 0 • • 0 −1 0 0 1 0
∗ ∗ ∗ 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0
• ∗ ∗ 0 0 0 0 • 0 0 0 −1 • • 0 0 0 0 0 1
∗ ∗ ∗ 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0
∗ ∗ ∗ 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 ∗ ∗ −1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

After performing row operations, the reduced form is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 ∗ ∗ 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 ∗ ∗ 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 ∗ ∗ 0 0 ∗ 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 ∗ ∗ 0 0 • 0 • 1 0 0 0 0 0 0 0 0
0 0 0 0 ∗ • 0 0 • 0 • 0 • • 1 0 0 0 0 0
0 0 0 0 • • 0 0 • 0 • 0 • • 0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The proof of the type D version of Lemma 7.2 again follows from the analogous 
counting argument.
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7.4. Type B

Here there is nothing new, apart from the formulas for the extended triple. Given 
triples τ = (kkk, ppp, qqq) and τ ′ = (kkk′, ppp, qqq) (of type B, which is the same as C), we extend τ ′

by

p̃i =
{
n + 1 − pi for 1 ≤ i ≤ s;
n + p2s+1−i for s + 1 ≤ i ≤ 2s;

q̃i =
{
n + qi for 1 ≤ i ≤ s;
n + 1 − q2s+1−i for s + 1 ≤ i ≤ 2s;

and

k̃′i =
{
k′i for 1 ≤ i ≤ s;
p2s+1−i + q2s+1−i + k′2s+1−i − 1 for s + 1 ≤ i ≤ 2s.

Remark 7.5. In [30], Woo and Yong introduce the notion of “pattern interval embedding” 
as a tool for comparing singularities of Schubert varieties lying in different flag varieties. 
The underlying geometry of their method uses isomorphisms between Richardson vari-
eties. By contrast, even in the case where �(v) = |μ|, the isomorphism of our Theorem 7.1
does not extend to one between Richardson varieties Ωw ∩ Xv and Ωw−1

λ
∩ Xw−1

μ
. In 

fact, there are many examples where the Bruhat intervals [w, v] and [w−1
λ , w−1

μ ] are not 
equinumerous.
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