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Abstract
We establish two-pointed Prym–Brill–Noether loci with special vanishing at
two points, and determine their K-theory classes when the dimensions are as
expected. The classes are derived by the applications of a formula for the K-
theory of certain vexillary degeneracy loci in type D. In particular, we show a
two-pointed version of the Prym–Petri theorem on the expected dimension in
the general case, with a coupled Prym–Petri map. Our approach is inspired by
the work on pointed cases by Tarasca, and we generalize unpointed cases by De
Concini-Pragacz and Welters.
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1 INTRODUCTION

Prym varieties belong to a class of principally polarized abelian varieties associated with étale double covers of algebraic
curves. The Prym–Brill–Noether loci, which are the Brill–Noether loci for Prym varieties, were introduced by Welters
[21]. Later, these loci were generalized to the Prym–Brill–Noether loci with special vanishing at one point by the author
[14] and Tarasca [20], so-called, pointed Prym–Brill–Noether loci. The scheme structure can be understood as degeneracy
loci of Lie type D. To be specific, De Concini-Pragacz [9] regarded the Prym–Brill–Noether loci as the degeneracy loci,
characterized by a rank condition on the intersection of twomaximal isotropic subbundles in a vector bundle with respect
to a non-degenerate quadratic form. The pointed cases [14, 20] were presented as the degeneracy loci by rank conditions on
the intersection of a maximal isotropic subbundle of the vector bundle and an isotropic flag associated with a fixed point.
The goal of this paper is to study the Prym–Brill–Noether loci with special vanishing at two points, providing some

analogous results from the pointed case in [14, 20]. We not only identify the two-pointed Prym–Brill–Noether loci as being
associated with a certain vexillary degeneracy loci of Lie type D in expected dimension, but also give a formula for the
class of the two-pointed Prym–Brill–Noether loci in connective K-theory. Furthermore, we establish that the expected
dimensions of the two-pointed Prym–Brill–Noether loci hold generically.
In concrete terms, the two-pointed Prym–Brill–Noether locus is defined as follows. Let 𝐶 be a smooth algebraic curve

of genus 𝑔 over an algebraically closed field 𝕂 of characteristic different from two. Let 𝜋 ∶ 𝐶 → 𝐶 be an étale double
cover of 𝐶, which is determined by a nontrivial 2-torsion point 𝜖 in Jac(𝐶). Let 𝐚′ = (0 ≤ 𝑎′0 < 𝑎′1 < ⋯ < 𝑎′𝑟 ≤ 2𝑔 − 2) and
𝐛′ = (0 ≤ 𝑏′0 < 𝑏′1 < ⋯ < 𝑏′𝑟 ≤ 2𝑔 − 2) be strictly increasing sequences such that

min
{
𝑎′
𝑖+1

− 𝑎′
𝑖
, 𝑏′

𝑖+1
− 𝑏′

𝑖

}
= 1 (1.1)
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for 𝑖 = 0, … , 𝑟 − 2. For points 𝑃 and 𝑄 in 𝐶, the locus 𝑉𝑟
𝐚′,𝐛′

(𝐶, 𝜖, 𝑃, 𝑄) in a Prym variety𝒫+ for odd 𝑟 (or𝒫− for even 𝑟) is
defined to be

𝑉𝑟
𝐚′,𝐛′

(𝐶, 𝜖, 𝑃, 𝑄) ∶=
{
𝐿 ∈ 𝒫± | ℎ0(𝐶, 𝐿) ≡ 𝑟 + 1 (mod 2), ℎ0(𝐶, 𝐿(−𝑏′

𝑗
𝑄′ − 𝑎′

𝑖
𝑃′))) ≥ 𝑟 + 1 − 𝑗 − 𝑖 for all 𝑖, 𝑗

}
.

Indeed, set-theoretically, we can recover Prym–Brill–Noether loci from Welters [21] by taking 𝐚′ = (0, … , 𝑟) and 𝐛′ =

(0, … , 𝑟), and onemay forget either a pair (𝑃, 𝐚) or (𝑄, 𝐛′)with the condition (1.1) to obtain the pointed Prym–Brill–Noether
loci in [14, Section 4.1], [20, Section 2]. From an analysis of degeneracy loci of type D in Section 2, the conditions spec-
ified by 𝐚′ and 𝐛′ for 𝑉𝑟

𝐚′,𝐛′
(𝐶, 𝜖, 𝑃, 𝑄) are equivalent to the conditions associated with modified sequences 𝐚 and 𝐛 for

𝑉𝑟
𝐚,𝐛

(𝐶, 𝜖, 𝑃, 𝑄) defined by

ℎ0(𝐶, 𝐿(−𝑏𝑖𝑄 − 𝑎𝑖𝑃)) ≥ 𝑟 + 1 − 𝑖 for 𝑖 = 0, … , 𝑟

in𝒫±. This enables us to impose the scheme structure of a vexillary degeneracy loci of type D on the two-pointed Prym–
Brill–Noether loci, generalizing the case 𝐚′ = (0, … , 𝑟) and 𝐛′ = (0, … , 𝑟) in [9]. When the two points 𝑃 and 𝑄 come
together, the locus 𝑉𝑟

𝐚,𝐛
(𝐶, 𝜖, 𝑃, 𝑄) specializes to a pointed Prym–Brill–Noether locus associated with a strictly increasing

sequence 𝑎𝑖 + 𝑏𝑖 for 𝑖 = 0, … , 𝑟, and it is endowed with the scheme structure in [14, 20].
The connective K-theory introduced by Cai [6] for schemes establishes a connection between the Chow groups and

Quillen’s K-theory groups. Dai and Levine [8] explored this notion within the realm of the motivic homotopy theory. In
our work, we employ a simpler variant of the connective K-theory for the scheme: the connective K-cohomology 𝐶𝐾∗(𝑋)

for an irreducible variety 𝑋. See [1, 12, 13] especially for more details in the context in degeneracy loci.
When𝑉𝑟

𝐚,𝐛
(𝐶, 𝜖, 𝑃, 𝑄) has the expected dimension 𝑔 − 1 − |𝐚 + 𝐛|, the K-theory class formulas for𝑉𝑟

𝐚,𝐛
(𝐶, 𝜖, 𝑃, 𝑄) in the

connective K-theory are stated as follows. Let 𝜆 be a partition such that

𝜆𝑖 = 𝑎𝑟+1−𝑖 + 𝑏𝑟+1−𝑖,

and 𝓁◦ ∶= 𝓁(𝜆) be the length of 𝜆, the number of non-zero parts of 𝜆.

Theorem 1.1 (= Theorem 3.1). The dimension of𝑉𝑟
𝐚,𝐛

(𝐶, 𝜖, 𝑃, 𝑄) is at least 𝑔 − 1 − |𝐚 + 𝐛|. If𝑉𝑟
𝐚,𝐛

(𝐶, 𝜖, 𝑃, 𝑄) has dimension
of 𝑔 − 1 − |𝐚 + 𝐛|, then it is Cohen–Macaulay, and[

𝑉𝑟
𝐚,𝐛

(𝐶, 𝜖, 𝑃, 𝑄)
]
= 𝑃𝑓𝜆(𝑑(1), … , 𝑑(𝓁◦); 𝛽)

in 𝐶𝐾∗(𝒫±)[1∕2].

The above formula is expressed by a Pfaffian of a skew-symmetric matrix associated with K-theoretic Chern classes, as
derived from the K-theory class formulas for vexillary degeneracy loci of type D in [1, Theorem 4]. Unspecified notations
in the theorem will be defined later in Section 3. As a corollary, we have the following about the class of 𝑉𝑟

𝐚,𝐛
(𝐶, 𝜖, 𝑃, 𝑄) in

the numerical equivalence ring𝑁∗(𝒫±,𝕂) or the singular cohomology ring𝐻∗(𝒫±,ℂ). Let 𝜉 be the class of theta divisor
on the Prym variety𝒫± in 𝑁∗(𝒫±,𝕂) or in𝐻∗(𝒫±,ℂ).

Corollary 1.2. If dim(𝑉𝑟
𝐚,𝐛

(𝐶, 𝜖, 𝑃, 𝑄)) = 𝑔 − 1 − |𝐚 + 𝐛|, then 𝑉𝑟
𝐚,𝐛

(𝐶, 𝜖, 𝑃, 𝑄) has the class

[
𝑉𝑟
𝐚,𝐛

(𝐶, 𝜖, 𝑃, 𝑄)
]
=

1

2𝓁◦

𝑟∏
𝑖=0

1

(𝑎𝑖 + 𝑏𝑖)!

∏
𝑗<𝑖

𝑎𝑖 + 𝑏𝑖 − 𝑎𝑗 − 𝑏𝑗

𝑎𝑖 + 𝑏𝑖 + 𝑎𝑗 + 𝑏𝑗
⋅ (2𝜉)|𝐚+𝐛| (1.2)

in𝑁∗(𝒫±,𝕂) or𝐻∗(𝒫±,ℂ). In particular, the dimension of 𝑉𝑟
𝐚,𝐛

(𝐶, 𝜖, 𝑃, 𝑄) is at least 𝑔 − 1 − |𝐚 + 𝐛|.
The right-hand side of (1.2) is supported on 𝑉𝑟

𝐚,𝐛
(𝐶, 𝜖, 𝑃, 𝑄) even if the dimension of 𝑉𝑟

𝐚,𝐛
(𝐶, 𝜖, 𝑃, 𝑄) is greater than

𝑔 − 1 − |𝐚 + 𝐛|. Moreover, with 𝜉 being ample, the right-hand side of (1.2) becomes non-zero whenever 𝑔 − 1 − |𝐚 + 𝐛| ≥
0. This implies that if 𝑔 − 1 ≥ |𝐚 + 𝐛|, the two-pointed Prym–Brill–Noether locus 𝑉𝑟

𝐚,𝐛
(𝐶, 𝜖, 𝑃, 𝑄) is not empty and has
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dimension at least 𝑔 − 1 − |𝐚 + 𝐛|, for any such a pair (𝐶, 𝜖, 𝑃, 𝑄). Corollary 1.2 recovers the results in [9, Theorem 9] with
𝐚′ = (0, 1, … , 𝑟) and 𝐛′ = (0, 1, … , 𝑟), and a two-pointed version analogous to [20, Theorem 1]. The subsequent theorem
confirms that the expected dimension of 𝑉𝑟

𝐚,𝐛
(𝐶, 𝜖, 𝑃, 𝑄) is achieved generically.

Theorem 1.3. Let 𝐶 be a general curve of genus 𝑔, with its étale double cover 𝐶 associated with 𝜖, an arbitrary non-trivial
2-torsion point in Jac(𝐶). Let 𝑃 and 𝑄 be general points in 𝐶. Then, 𝑉𝑟

𝐚,𝐛
(𝐶, 𝜖, 𝑃, 𝑄) is either empty or has dimension 𝑔 − 1 −|𝐚| − |𝐛| at 𝐿 ∈ 𝑉𝑟

𝐚,𝐛
(𝐶, 𝜖, 𝑃, 𝑄) such that ℎ0(𝐶, 𝐿(−𝑎𝑖𝑃 − 𝑏𝑖𝑄)) = 𝑟 + 1 − 𝑖 for all 𝑖 = 0, … , 𝑟.

We obtain the main theorem presented above using arguments similar to [10, 20, 21], which are used in the proof
of the Gieseker–Petri-type theorem. Theorem 1.3 encompasses the result from [21] concerning the Prym–Brill–Noether
loci. Consequently, we derive conditions for the non-emptiness of the pointed Prym–Brill–Noether loci𝑉𝑟

𝐚,𝐛
(𝐶, 𝜖, 𝑃, 𝑄), as

follows.

Corollary 1.4. Let𝐶 be a general curve with its genus equals to 𝑔. Let 𝜖 ∈ Jac(𝐶) be an arbitrary 2-torsion point, and𝑃,𝑄 ∈ 𝐶

general points. Then 𝑉𝑟
𝐚,𝐛

(𝐶, 𝜖, 𝑃, 𝑄) ≠ ∅ if and only if 𝑔 − 1 ≥ |𝐚| + |𝐛|.
In particular, if 𝑉𝑟

𝐚,𝐛
(𝐶, 𝜖, 𝑃, 𝑄) is nonempty, the dimension of 𝑉𝑟

𝐚,𝐛
(𝐶, 𝜖, 𝑃, 𝑄) is 𝑔 − 1 − |𝐚| − |𝐛| and its class is equal to

the class (1.2) in𝑁∗(𝒫±,𝕂) and𝐻∗(𝒫±,ℂ), where the characteristic of𝕂 is not equal to 2.

Lastly, our study focuses on the two-pointed Prym–Brill–Noether loci under the condition (1.1), which allows us to
establish Theorem 1.3. In light of constraint (1.1), we take a partial step toward expanding the results on pointed Prym–
Brill–Noether loci by the author [14] and Tarasca [20] to the two-pointed cases. So, it would be interesting to investigate
further on the two-pointed Prym–Brill–Noether loci without (1.1), as a complete generalization of pointed Prym–Brill–
Noether loci. Even more, the study of any motivic version of Prym–Brill–Noether loci with special vanishing at up to two
fixed points could be of considerable interest.
The organization of this paper is outlined in the following manner. In Section 2, we discuss the degeneracy loci of Lie

type D associated to two strictly increasing sequences 𝐚′ and 𝐛′ satisfying (1.1) in general, and show the connection to the
degeneracy loci associated with the new sequences 𝐚 and 𝐛. In Section 3, we define the two-pointed Prym–Brill–Noether
loci and establish formulas for the K-theory class of the loci in the connective K-theory. In Section 4, we determine a
coupled Prym–Petri map, and Section 5 contains the proof of the coupled version of the Prym–Petri theorem, showing
Theorem 1.3.

2 THE DEGENERACY LOCI

We consider sequences of integers 𝐩′ = (0 ≤ 𝑝′0 < 𝑝′1 < ⋯ < 𝑝′𝑠) and 𝐪′ = (0 ≤ 𝑞′0 < 𝑞′1 < ⋯ < 𝑞′𝑠), satisfying

min{𝑝′
𝑖+1

− 𝑝′
𝑖
, 𝑞′

𝑖+1
− 𝑞′

𝑖
} = 1

for 𝑖 = 0, … , 𝑠 − 2.
Let𝑉 be a vector bundle of rank 2𝑛 over a variety𝑋, equipped with a non-degenerate quadratic form.We consider flags

of isotropic subbundles

𝐸𝑝′𝑠 ⊂ 𝐸𝑝′
𝑠−1

⊂ ⋯ ⊂ 𝐸𝑝′
0
⊂ 𝑉 and 𝐹𝑞′𝑠 ⊂ 𝐹𝑞′

𝑠−1
⊂ ⋯ ⊂ 𝐹𝑞′

0
⊂ 𝑉

on 𝑋, where the rank of 𝐸𝑝′ is 𝑛 − 𝑝′ and 𝐹𝑞′ is 𝑛 − 𝑞′. The locus 𝑉𝐩′,𝐪′ associated to the sequences 𝐩′ and 𝐪′ is given by

dim(𝐸𝑝′
𝑖
∩ 𝐹𝑞′

𝑗
) ≥ 𝑠 + 1 − 𝑗 − 𝑖 for all 𝑖, 𝑗. (2.1)

This degeneracy locus (and any locus defined by such conditions in this paper) must be read by the closure of the locus
where equality holds. We further impose an additional condition either dim(𝐸0 ∩ 𝐹0) ≡ 0 (mod 2) or dim(𝐸0 ∩ 𝐹0) ≡ 1

(mod 2) on 𝑉𝐩′,𝐪′ . It is worthwhile noting that the conditions for 𝑖 + 𝑗 ≤ 𝑠 are enough to define the locus, since the
remaining ones become trivial.

 15222616, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.202300581 by U
niversity O

f G
eorgia L

ibraries, W
iley O

nline L
ibrary on [12/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1204 JEON

Let us analyze the scheme structure of 𝑉𝐩′,𝐪′ with some combinatorics and notions about Schubert varieties of Lie type
D in [4, Section 2]. We focus on the locus with the imposed condition dim(𝐸0 ∩ 𝐹0) ≡ 0 (mod 2), but the analysis of the
scheme structure with dim(𝐸0 ∩ 𝐹0) ≡ 1 (mod 2) is similar.
Let 𝐺 be the special orthogonal group 𝑆𝑂(𝑉) = 𝑆𝑂2𝑛 in dimension 2𝑛. We denote𝑊+

𝑛 as the set of signed permutations
with even number of sign changes in𝑊𝑛 = 𝑆𝑛 ⋉ {±1}𝑛. Here, 𝑆𝑛 is the symmetric group. Often,𝑊𝑛 is considered as the
subgroup of 𝑆2𝑛 such that 𝑤(𝑖) = 𝑤(𝑖) for 𝑤 ∈ 𝑊𝑛. Note that 𝑎 indicates −𝑎. For a signed permutation 𝑣 in𝑊+

𝑛 , one can
define a rank function by

𝑟𝑣(𝑎, 𝑏) = #{𝑠 < 𝑏 | 𝑣(𝑠) > 𝑎}

for 𝑎 ∈ {0, … , 𝑛 − 1} and 𝑏 ∈ {𝑛 − 1,… , 0, 0, … 𝑛 − 1}, as in [4, p. 10].
Let Fl be an isotropic flag variety parameterizing flags

0 ⊂ 𝐸𝑛−1 ⊂ ⋯ ⊂ 𝐸1 ⊂ 𝐸0 ⊂ 𝑉.

of isotropic subbundles defined on 𝑋 with respect to the quadratic form. Schubert varieties in the isotropic flag variety (or
a degeneracy locus on a variety with isotropic bundles) are defined by

dim(𝐸𝑏 ∩ 𝐹𝑎) ≥ 𝑟𝑣(𝑎, 𝑏), (2.2)

for all 𝑎 and 0 ≤ 𝑏 ≤ 𝑛 − 1. The rank function is useful to determine the Bruhat order on signed permutations. That is,
for 𝑢, 𝑣 ∈ 𝑊+

𝑛 , we have 𝑢 ≤ 𝑣 in the Bruhat order if and only if 𝑟𝑢(𝑎, 𝑏) ≤ 𝑟𝑣(𝑎, 𝑏) for all 𝑎 and 0 ≤ 𝑏 ≤ 𝑛 − 1.
One can minimize the list of conditions (2.2), as some of them are redundant. Especially, we have a set of triples 𝑆 =

{(𝑎𝑖, 𝑏𝑖, 𝑘𝑖)}𝑖 where the set of signed permutations 𝑢with 𝑟𝑢(𝑎, 𝑏) ≥ 𝑘𝑖 has a uniqueminimum signed permutation 𝑣 in the
Bruhat order. This enables us to define the Schubert varieties associated with 𝑣 by

dim(𝐸𝑎𝑖 ∩ 𝐹𝑏𝑖 ) ≥ 𝑘𝑖

for (𝑎𝑖, 𝑏𝑖, 𝑘𝑖) ∈ 𝑆.
One example of this set is the essential set by Fulton [11, Lemma 3.10]. In our situation, we choose a reduced list of

conditions as follows. Given any 𝐩′ = (𝑝′0, … , 𝑝′𝑠) and 𝐪′ = (𝑞′0, … , 𝑞′𝑠), we define a triple 𝜏 ∶= 𝜏(𝐩′, 𝐪′) of three sequences
𝐩 = (𝑝0, … , 𝑝𝑠), 𝐪 = (𝑞0, … , 𝑞𝑠) and 𝐤 = (𝑘0, … , 𝑘𝑠) of even length 𝑠 + 1 by

𝑝2𝑖 = 𝑝′
𝑖
, 𝑞2𝑖 = 𝑞′

𝑖
, and 𝑘2𝑖 = 𝑠 + 1 − 2𝑖 (2.3)

𝑝2𝑖+1 = 𝑝′
𝑖
, 𝑞2𝑖+1 = 𝑞′

𝑖+1
, and 𝑘2𝑖+1 = 𝑠 + 1 − 2𝑖 − 1 if 𝑝′

𝑖+1
− 𝑝′

𝑖
= 1, (2.4)

𝑝2𝑖+1 = 𝑝′
𝑖+1

, 𝑞2𝑖+1 = 𝑞′
𝑖
, and 𝑘2𝑖+1 = 𝑠 + 1 − 2𝑖 − 1 if 𝑞′

𝑖+1
− 𝑞′

𝑖
= 1 (2.5)

for 0 ≤ 𝑖 ≤ ⌊𝑠∕2⌋. Moreover, if 𝑠 + 1 is odd, we add 𝑝−1 = 𝑞−1 = 0 or remove the case when (𝑝′0, 𝑞
′
0) = (0, 0) to have a triple

of even length.
For example, let 𝐩′ = (5, 8, 9, 12, 14) and 𝐪′ = (1, 2, 6, 10, 11) with 𝑠 = 4. Since 𝑠 + 1 = 5 is odd, we set 𝑝−1 = 𝑞−1 = 0.

Then, we have 𝐩 = (0, 5, 8, 8, 8, 9) and 𝐪 = (0, 1, 1, 2, 6, 6) with corresponding 𝑘𝑖 = 𝑠 + 1 − 𝑖 for 𝑖 = −1, 0, … , 𝑠.
For the triple 𝜏 arising this way, we can recover a vexillary signed permutation𝑤 ∶= 𝑤(𝜏) by the algorithm in [3, Section

2] after replacing𝑝𝑖 and 𝑞𝑖 by𝑝𝑖 + 1 and 𝑞𝑖 + 1, respectively. The corresponding partition 𝜆 is given by𝑝𝑖 + 𝑞𝑖 . The vexillary
element 𝑤 can be characterized as follows.

Lemma 2.1. The signed permutation 𝑤 is unique and minimal in Bruhat order such that

𝑟𝑤(𝑞𝑖, 𝑝𝑖) = #{𝑝 < 𝑝𝑖 ∶ 𝑤(𝑝) > 𝑞𝑖} ≥ 𝑠 + 1 − 𝑖 for all 𝑖,

and its length is
∑

𝑖
(𝑝𝑖 + 𝑞𝑖).
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JEON 1205

We remark that the length is equal to the codimension of the corresponding Schubert variety in the isotropic flag variety.
Let us define a locus 𝑉𝐩,𝐪 by conditions

dim(𝐸𝑝𝑖 ∩ 𝐹𝑞𝑖 ) ≥ 𝑠 + 1 − 𝑖 for all 𝑖.

Then, the lemma implies that

𝑉𝐩,𝐪 = 𝑉𝐩′,𝐪′ .

In fact, the procedure (2.3) covers the conditions when 𝑖 = 𝑗 in (2.1). Furthermore, both (2.3) and (2.4) contains the case
where dim(𝐸𝑝′

𝑖+1
∩ 𝐹𝑞′

𝑖
) ≥ 𝑠 + 1 − 2𝑖 − 1, since

𝑟𝑤(𝑞
′
𝑖
, 𝑝′

𝑖+1
) = 𝑟𝑤(𝑞

′
𝑖
, 𝑝′

𝑖
+ 1) ≥ 𝑟𝑤(𝑞

′
𝑖
, 𝑝′

𝑖
) − 1 ≥ 𝑠 + 1 − 2𝑖 − 1.

Similarly, we can see that the condition dim(𝐸𝑝′
𝑖
∩ 𝐹𝑞′

𝑖+1
) ≥ 𝑠 + 1 − 2𝑖 − 1 is included in (2.3) and (2.5). Hence, the scheme

structure of 𝑉𝐩′,𝐪′ = 𝑉𝐩,𝐪 is induced by that of a vexillary Schubert variety associated to 𝑤 in the flag variety Fl of type D.

3 THE TWO-POINTED PRYM–BRILL–NOETHER LOCI

In this section, we discuss the Brill–Noether loci in the Prym variety 𝒫± with special vanishings at two points, and
investigate their classes in connective K-theory.
Let 𝐶 be a smooth algebraic curve of genus 𝑔 over an algebraically closed field 𝕂 of characteristic not 2. Let 𝜋 ∶ 𝐶 → 𝐶

be an irreducible étale double covering. Classically, the covering 𝜋 determines a class 𝜖 of order 2 in Jac(𝐶) such that
𝜋∗𝐶 = 𝐶 ⊕ 𝜖. Conversely, any non-trivial 2-torsion point 𝜖 in Jac(𝐶) defines an irreducible étale double covering 𝜋 ∶

𝐶 = Spec(𝐶 ⊕ 𝜖) → 𝐶. So, we may represent the double covering 𝜋 by the pair (𝐶, 𝜖). In particular, the étale double
covering 𝜋 induces a norm map Nm ∶ Pic

2𝑔−2
(𝐶) → Pic

2𝑔−2
(𝐶). The scheme-theoretic inverse image Nm−1(𝐾𝐶) of the

canonical class 𝐾𝐶 ∈ Pic
2𝑔−2

(𝐶) is given by the disjoint union

Nm−1(𝐾𝐶) ≅ 𝒫+ ⊔𝒫−,

of two connected irreducible components 𝒫+ = {𝐿 | ℎ0(𝐶, 𝐿) ≡ 0 (mod 2)} and 𝒫− = {𝐿 | ℎ0(𝐶, 𝐿) ≡ 1 (mod 2)}. Both
varieties𝒫+ and𝒫− are translates of the Prym variety𝒫(𝐶, 𝜖) = (Ker(Nm))0 of dimension 𝑔 − 1, the connected compo-
nent of the kernel of Nm ∶ Jac(𝐶) → Jac(𝐶) containing the origin. For more details about Prym varieties, see [5, App. C]
and [15]. We denote by𝒫± either one of𝒫+ or𝒫− and not the union of these varieties.
We fix two points 𝑃 and 𝑄 on the double cover 𝐶 with 𝑃 − 𝑄 nontorsion. For 𝐿 ∈ 𝒫±, let

𝐚′ = (0 ≤ 𝑎′0 < 𝑎′1 < ⋯ < 𝑎′𝑟 ≤ 2𝑔 − 2) and

𝐛′ = (0 ≤ 𝑏′0 < 𝑏′1 < ⋯ < 𝑏′𝑟 ≤ 2𝑔 − 2)

be strictly increasing sequences such that

min{𝑎′
𝑖+1

− 𝑎′
𝑖
, 𝑏′

𝑖+1
− 𝑏′

𝑖
} = 1

for 𝑖 = 0, … , 𝑟 − 2. For the above 𝐚′ and 𝐛′, the two-pointed Prym–Brill–Noether loci 𝑉𝑟
𝐚′,𝐛′

(𝐶, 𝜖, 𝑃, 𝑄) ⊂ 𝒫± of line bundles
associated with (𝐶, 𝜖, 𝑃, 𝑄) is defined by

𝑉𝑟
𝐚′,𝐛′

(𝐶, 𝜖, 𝑃, 𝑄) ∶=
{
𝐿 ∈ Nm−1(𝐾𝐶) | ℎ0(𝐶, 𝐿) ≡ 𝑟 + 1 (mod 2), ℎ0(𝐶, 𝐿(−𝑏′

𝑗
𝑄′ − 𝑎′

𝑖
𝑃′)) ≥ 𝑟 + 1 − 𝑗 − 𝑖 for all 𝑖, 𝑗

}
(3.1)

in Pic2𝑔−2(𝐶).
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1206 JEON

Now, we provide the scheme structure of the two-pointed Prym–Brill–Noether loci as generalized version of the
unpointed Prym–Brill–Noether loci [9], and analogous result to the pointed case in [20].
Let  be the Poincaré line bundle on Pic

2𝑔−2
(𝐶) × 𝐶. We consider the double covering 1 × 𝜋 ∶ Pic

2𝑔−2
(𝐶) × 𝐶 →

Pic
2𝑔−2

(𝐶) × 𝐶 induced by 𝜋, and set  = (1 × 𝜋)∗. Then |𝒫±×𝐶 , the restriction of  to𝒫± × 𝐶 is a rank 2 vector bun-
dle. The vector bundle |𝒫±×𝐶 is equipped with a nondegenerate quadratic form. (See [15, p. 343], [16, p. 185], and [9, p.
699].)
Let 𝑞1 ∶ Pic

2𝑔−2
(𝐶) × 𝐶 → Pic

2𝑔−2
(𝐶) be the projection to the first factor and 𝑞2 ∶ Pic

2𝑔−2
(𝐶) × 𝐶 → 𝐶 the projection to

the second factor. Let 𝜈1 ∶ Pic
2𝑔−2

(𝐶) × 𝐶 → Pic
2𝑔−2

(𝐶) be the first projection, and 𝜈2 ∶ Pic
2𝑔−2

(𝐶) × 𝐶 → 𝐶 be the second
projection. These maps provide the commutative diagram, as follows.

Let𝐷 =
∑𝑁

𝑖=1 𝑝𝑖 denote a divisor on 𝐶 for sufficiently large enough𝑁, where 𝑝𝑖 ’s are distinct such that 𝑝𝑖 ≠ 𝜋(𝑃), 𝜋(𝑄).
Let 𝐷̃ = 𝜋∗𝐷 and (±𝐷̃) = ⊗ 𝜈∗2𝐶(±𝐷̃). We define

 ∶= (𝜈1)∗((𝐷̃)∕(−𝐷̃))|𝒫± = (𝑞1)∗((𝐷)∕(−𝐷))|𝒫±,

where (±𝐷) =  ⊗ 𝑞∗2(𝐶(±𝐷)). Let 𝑛 = 2𝑁 = 2deg(𝐷). The vector bundle  has rank 2𝑛 and is endowed with a
nondegenerate quadratic form 𝔮 induced by the form  with values in 𝒫± . For 0 ≤ 𝑖 ≤ 𝑟, we let

𝑎′
𝑖
∶= (𝜈1)∗((𝐷̃ − 𝑎′

𝑖
𝑃))|𝒫± and 𝑏′

𝑖
∶= (𝜈1)∗((−𝑏

′
𝑖
𝑄)∕(−𝐷̃))|𝒫±.

Then,𝑎′
𝑖
and𝑏′

𝑖
are subbundles of  and isotropic with respect to the form 𝔮, with their ranks

rk(𝑎′
𝑖
) = 𝑛 − 𝑎′

𝑖
and rk(𝑏′

𝑖
) = 𝑛 − 𝑏′

𝑖
,

via the Riemann–Roch theorem. We thus have natural flags

𝑎′𝑟
⊂ 𝑎′

𝑟−1
⊂ ⋯ ⊂ 𝑎′

0
⊂  and 𝑏′𝑟

⊂ 𝑏′
𝑟−1

⊂ ⋯ ⊂ 𝑏′
0
⊂ 

of vector bundles on𝒫±.
We take 𝐿 ∈ 𝒫±, and let 𝑉 ∶= 𝐻0(𝐶, 𝐿(𝐷̃)∕𝐿(−𝐷̃)) be a vector space with a nondegenerate form induced by 𝔮. We

consider subspaces𝑊𝑎′
𝑖
∶= 𝐻0(𝐶, 𝐿(𝐷̃ − 𝑎′

𝑖
𝑃′)) and 𝑈𝑏′

𝑖
∶= 𝐻0(𝐶, 𝐿(−𝑏′

𝑖
𝑄′)∕𝐿(−𝐷̃)) of 𝑉 ∶= 𝐻0(𝐶, 𝐿(𝐷̃)∕𝐿(−𝐷̃)). Then,

𝑊𝑎′
𝑖
’s and 𝑈𝑏′

𝑗
are all isotropic to the nondegenerate quadratic form. Furthermore, through Mumford’s construction

[16, p. 183], we establish 𝐻0(𝐶, 𝐿(−𝑏′
𝑗
𝑄 − 𝑎′

𝑖
𝑃)) as the intersection of two isotropic subspaces𝑊𝑎′

𝑖
and 𝑈𝑏′

𝑗
. That is,

𝐻0(𝐶, 𝐿(−𝑏′
𝑗
𝑄 − 𝑎′

𝑖
𝑃)) = 𝑊𝑎′

𝑖
∩ 𝑈𝑏′

𝑗
⊂ 𝑉.

In particular, we can globalize this construction over the Prym varieties𝒫±, so that 𝑉𝑟
𝐚′,𝐛′

(𝐶, 𝜖, 𝑃, 𝑄) can be defined set-
theoretically by the condition

dim(𝑎′
𝑖
∩𝑏′

𝑗
) ≥ 𝑟 + 1 − 𝑗 − 𝑖, (3.2)

the fiberwise intersection of two isotropic subbunddles𝑎′
𝑖
and𝑏′

𝑗
in dimension at least 𝑟 + 1 − 𝑗 − 𝑖 for all 𝑖, 𝑗.

Combined with the triple 𝜏(𝐚′, 𝐛′) = (𝐚, 𝐛, 𝐤) from Section 2, it is equivalent to say that the two-pointed Prym–Brill–
Noether loci 𝑉𝑟

𝐚,𝐛
(𝐶, 𝜖, 𝑃, 𝑄) = 𝑉𝑟

𝐚′,𝐛′
(𝐶, 𝜖, 𝑃, 𝑄) is the locus of line bundles 𝐿 in𝒫± such that

ℎ0(𝐶, 𝐿(−𝑏𝑖𝑄 − 𝑎𝑖𝑃)) = dim(𝑎𝑖 ∩𝑏𝑖 ) ≥ 𝑟 + 1 − 𝑖 for 𝑖 = 0, … , 𝑟.
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JEON 1207

The scheme structure of this presentation arises in a natural way from the scheme structure inherent in a Schubert vari-
ety associatedwith a vexillary element𝑤(𝜏) in the isotropic flag variety Fl of typeD,where 𝜏 = 𝜏(𝐚′, 𝐛′).We emphasize that
the scheme structure should be taken by the closure of the locuswhere the equality holds, as described in [1, Sectio4]. Thus,
𝑉𝑟
𝐚,𝐛

(𝐶, 𝜖, 𝑃, 𝑄)has the expected dimension 𝑔 − 1 − |𝐚 + 𝐛|where |𝐚 + 𝐛| ∶= ∑
𝑖
(𝑎𝑖 + 𝑏𝑖).Moreover, if𝑉𝑟

𝐚′,𝐛′
(𝐶, 𝜖, 𝑃, 𝑄)has

pure codimension |𝐚 + 𝐛|, it is Cohen–Macaulay by [18], cf. [9, Proposition 2 (2)].
Now, we provide formulas for the K-theory classes of such two-pointed Prym–Brill–Noether loci 𝑉𝑟

𝐚,𝐛
(𝐶, 𝜖, 𝑃, 𝑄).

For an irreducible variety 𝑋, we denote by 𝐶𝐾∗(𝑋) the connective K-cohomology which is a graded algebra over ℤ[𝛽]
where 𝛽 is in degree −1. Especially, 𝐶𝐾∗(𝑋) interpolates K-cohomology 𝐾◦(𝑋) at 𝛽 = −1 and the Chow ring 𝐴∗(𝑋) at
𝛽 = 0. We refer the reader to [1, Appendix A], [2, Section 1.1] for the relevant facts of the connective K-theory.
Let 𝜆 be the partition defined by 𝜆𝑖 = 𝑎𝑟+1−𝑖 + 𝑏𝑟+1−𝑖 . For 𝑖 = 1, … , 𝑟 + 1, let 𝑐(𝑖) = 𝑐𝐾((𝑟+1−𝑗)

∨
𝒫±) be the K-theoretic

Chern class of (𝑟+1−𝑗)
∨
𝒫± and

𝑒𝑚(𝑖) =

{
(−1)dim(∩)𝛾(𝒫±,𝒫±)𝑐𝐾

𝜆𝑖
(𝒫±∕(𝑟+1−𝑖)𝒫±) if𝑚 = 𝜆𝑖

0 otherwise

as the specialized Euler classes. See [1, Appendix B] for the Euler classes in details. Since the bundles𝑖 have trivial Chern
classes for sufficiently positive 𝐷̃ as in [9, Lemma 5.1], we have the following theorem by [1, Theorem 4].
Let 𝑑(𝑖) = 𝑐(𝑖) + 𝜎(𝑖)𝑒(𝑖) for 𝜎(𝑖) = (−1)𝑖 , 𝑖 = 1, … , 𝑟 + 1. Let 𝑇𝑖 be the raising operator raising the index of 𝑐(𝑖) by one,

and let 𝑅𝑖𝑗 = 𝑇𝑖∕𝑇𝑗 . Let 𝛿𝑖 denote the operator acting by sending 𝜎(𝑖) to 0. So, the action of 𝛿𝑖 replaces 𝑑(𝑖) by 𝑐(𝑖). We
write 𝑇𝑖 for 𝛿𝑖𝑇𝑖 .

Theorem 3.1. Let 𝓁◦ ∶= 𝓁(𝜆) be the number of non-zero components of 𝜆. The dimension of 𝑉𝑟
𝐚,𝐛

(𝐶, 𝜖, 𝑃, 𝑄) is at least
𝑔 − 1 − |𝐚 + 𝐛|. If dim(𝑉𝑟

𝐚,𝐛
(𝐶, 𝜖, 𝑃, 𝑄)) = 𝑔 − 1 − |𝐚 + 𝐛|, then we have

[
𝑉𝑟
𝐚,𝐛

(𝐶, 𝜖, 𝑃, 𝑄)
]
= 𝑃𝑓𝜆(𝑑(1), … , 𝑑(𝓁◦); 𝛽)

∶= 𝑃𝑓(𝑀)

in 𝐶𝐾∗(𝒫±)[1∕2]. Here,𝑀 is the skew-symmetric matrix with entries

𝑚𝑖,𝑗 =
1 − 𝛿𝑖𝛿𝑗𝑅𝑖𝑗

1 + 𝛿𝑖𝛿𝑗(𝑅𝑖𝑗 − 𝛽𝑇𝑖)
⋅
(1 − 𝛽𝑇𝑖)

𝓁◦−𝑖−𝜆𝑖+1

2 − 𝛽𝑇𝑖
⋅
(1 − 𝛽𝑇𝑗)

𝓁◦−𝑗−𝜆𝑗+1

2 − 𝛽𝑇𝑗
⋅ (𝑐𝜆𝑖 (𝑖) − (−1)𝓁◦𝑒𝜆𝑖 (𝑖)) ⋅ (𝑐𝜆𝑗 (𝑗) + (−1)𝓁◦𝑒𝜆𝑗 (𝑗).

If 𝓁◦ is odd, we augment the matrix𝑀 by

𝑚0𝑗 = (1 − 𝛽𝑇𝑗)
𝓁◦−𝑗−𝜆𝑗+1(2 − 𝛽𝑇𝑗)

−1 ⋅ (𝑐𝜆𝑗 (𝑗) + 𝑒𝜆𝑗 (𝑗)).

By the property in the connective K-theory, we have the class in the chow ring 𝐴∗(𝒫±) at 𝛽 = 0, and K-theory class in
𝐾◦(𝒫±) at 𝛽 = −1.
In addition, we have Corollary 1.2 from Theorem 3.1 at 𝛽 = 0 and [9, Lemma 5.2] that the Chern classes 𝑐(∨

𝑖
) = 𝑒2𝜉

for sufficiently large 𝐷̃ >> 0, which is independent of the choice of 𝑖.
In Corollary 1.2, when we take 𝐚 and 𝐛 constructed by 𝐚′ = (0, … , 𝑟) and 𝐛′ = (0, … , 𝑟) with (2.3) and (2.5), the above

corollary gives the result [9, Theorem 9]. Moreover, if we take 𝑃 = 𝑄, then we obtain the class of the pointed Prym–Brill–
Noether loci with special vanishing orders 𝐚 + 𝐛 = (𝑎𝑖 + 𝑏𝑖)𝑖 at 𝑃.

4 THE COUPLED PRYM–PETRI MAP

In this section, we modify the ideas in [20] which consider the pointed case and adjust the classical Brill–Noether case for
two points in [17].
Let 𝐶 be a smooth curve of genus 𝑔. Let 𝜋 ∶ 𝐶 → 𝐶 be an irreducible étale double covering associated with a non-trivial

2-torsion point 𝜖 in Jac(𝐶). Let 𝜄 ∶ 𝐶 → 𝐶 be the involution of 𝐶. The involution acts on the space 𝐻0(𝐶, 𝐾𝐶) so that one
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1208 JEON

has a decomposition

𝐻0(𝐶, 𝐾𝐶) ≅ 𝐻0(𝐶, 𝐾𝐶)
+ ⊕ 𝐻0(𝐶, 𝐾𝐶)

−,

where 𝐻0(𝐶, 𝐾𝐶)
+ is the space of invariants and 𝐻0(𝐶, 𝐾𝐶)

− is the anti-invariant sections. Since 𝐾𝐶 = 𝜋∗𝐾𝐶 , and by the
push–pull formula, the space 𝐻0(𝐶, 𝐾𝐶) of differential forms splits into a direct sum

𝐻0(𝐶, 𝐾𝐶) ≅ 𝐻0(𝐶, 𝐾𝐶) ⊕ 𝐻0(𝐶, 𝐾𝐶 ⊗ 𝜖).

Given the norm map Nm ∶ Pic(𝐶) → Pic(𝐶) induced by the covering 𝜋 as before, we have 𝜋∗◦Nm = idPic(𝐶) ⊗ 𝜖 and
Nm◦𝜋∗ = 2idPic(𝐶), see [19, (3.1.1-2)].
Let 𝑃,𝑄 ∈ 𝐶. Given 𝐚′ = (𝟎 ≤ 𝐚′𝟎 < 𝐚′𝟏 < ⋯ < 𝐚′𝐫) and 𝐛′ = (𝟎 ≤ 𝐛′𝟎 < 𝐛′𝟏 < ⋯ < 𝐛′𝐫) such that min{𝑎′

𝑖+1
− 𝑎′

𝑖
, 𝑏′

𝑖+1
−

𝑏′
𝑖
} = 1 for 𝑖 = 0, … , 𝑟 − 2, we have 𝐚 = (𝑎0, … , 𝑎𝑟) and 𝐛 = (𝑏0, … , 𝑏𝑟) of even length (by putting 𝑎−1 = 𝑏−1 = 0 if neces-

sary) from (2.3),(2.4),(2.5), satisfying ℎ0(𝐶, 𝐿(−𝑎𝑖𝑃 − 𝑏𝑖𝑄)) = 𝑟 + 1 − 𝑖 for all 𝑖, 𝐿 ∈ 𝑉𝑟
𝐚,𝐛

(𝐶, 𝜖, 𝑃, 𝑄). We mainly focus on
the case where 𝑟 + 1 is even for the rest of this paper, since the one where 𝑟 + 1 is odd follows similarly.
We define

𝑇𝐿
𝑃,𝑄

(𝐚, 𝐛) =
∑
0≤𝑖≤𝑟

𝐻0(𝐶, 𝐿(−𝑎𝑖𝑃 − 𝑏𝑖𝑄)) ⊗ 𝐻0(𝐶, 𝐾𝐶 ⊗ 𝐿∨(𝑎𝑖𝑃 + 𝑏𝑖𝑄)). (4.1)

We will use 𝑇𝐿
𝑃,𝑄

for 𝑇𝐿
𝑃,𝑄

(𝐚, 𝐛) as an abbreviation. It is worthwhile to note that 𝐻0(𝐶, 𝐿(−𝑎𝑖+1𝑃 − 𝑏𝑖+1𝑄)) ⊂

𝐻0(𝐶, 𝐿(−𝑎𝑖𝑃 − 𝑏𝑖𝑄)) such that there might be a nonempty intersection between terms in (4.1). The coupled Prym–Petri
map is given by the composition 𝑝◦𝜇

𝜇𝐿
𝑃,𝑄

∶ 𝑇𝐿
𝑃,𝑄

𝜇
�→ 𝐻0(𝐶, 𝐾𝐶)

𝑝
�→ 𝐻0(𝐶, 𝐾𝐶 ⊗ 𝜖).

To be more specific, one may view the coupled Prym–Petri map as follows. We take sections

𝜎𝑖 ∈ 𝐻0(𝐶, 𝐿(−𝑎𝑖𝑃 − 𝑏𝑖𝑄))∖
(
𝐻0(𝐶, 𝐿(−𝑎𝑖+1𝑃 − 𝑏𝑖+1𝑄))

)
for 0 ≤ 𝑖 ≤ 𝑟 − 1, and

𝜎𝑟 ∈ 𝐻0(𝐶, 𝐿(−𝑎𝑟𝑃 − 𝑏𝑟𝑄)).

Then, the composition 𝑝◦𝜇

𝑟⨁
𝑖=0

⟨𝜎𝑖⟩⊗𝐻0(𝐶, 𝐾𝐶 ⊗ 𝐿∨(𝑎𝑖𝑃 + 𝑏𝑖𝑄))
𝜇
�→ 𝐻0(𝐶, 𝐾𝐶)

𝑝
�→ 𝐻0(𝐶, 𝐾𝐶 ⊗ 𝜖)

can be defined by sending 𝜎 ⊗ 𝜏 to 1∕2(𝜎.𝜏 − 𝜄(𝜎).𝜄(𝜏))where 𝜄 is the involution for the double cover𝐶. In particular, given
the inclusions

𝜄∗𝐻0(𝐶, 𝐿(−𝑎𝑖𝑃 − 𝑏𝑖𝑄)) ↪ 𝜄∗𝐻0(𝐶, 𝐿)
≅
�→ 𝐻0(𝐶, 𝐾𝐶 ⊗ 𝐿∨) ↪ 𝐻0(𝐶, 𝐾𝐶 ⊗ 𝐿∨(𝑎𝑖𝑃 + 𝑏𝑖𝑄))

for each 𝑖, we may call the composition 𝑝◦𝜇 restricted to a map

𝜇 ∶
⨁
𝑖

⟨𝜎𝑖⟩⊗𝐻0(𝐶, 𝐾𝐶 ⊗ 𝐿∨(𝑎𝑖𝑃 + 𝑏𝑖𝑄))∕𝜄
∗𝐻0(𝐶, 𝐿(−𝑎𝑖𝑃 − 𝑏𝑖𝑄)) → 𝐻0(𝐶, 𝐾𝐶 ⊗ 𝜖)

the coupled Prym–Petri map 𝜇 for 𝐿.
We remark that the coupled Prym–Petri map recovers the Prym–Petri map in [21] with specialization 𝐚′ = (𝟎, 𝟏, … , 𝐫)

and 𝐛′ = (0, 1, … , 𝑟).
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JEON 1209

Now, we provide information regarding the tangent space of the two-pointed Prym–Brill–Noether loci with the coupled
Prym–Petri map. Let us consider the natural maps 𝜉𝑖

𝜉𝑖 ∶𝐻
1(𝐶, 𝒪𝐶) → Hom(𝐻0(𝐶, 𝐿(−𝑎𝑖𝑃 − 𝑏𝑖𝑄)),𝐻

1(𝐶, 𝐿(−𝑎𝑖𝑃 − 𝑏𝑖𝑄))),

as the transpose of

𝜇𝑖 ∶ 𝐻
0(𝐶, 𝐾𝐶 ⊗ 𝐿∨(𝑎𝑖𝑃 + 𝑏𝑖𝑄)) ⊗ 𝐻0(𝐶, 𝐿(−𝑎𝑖𝑃 − 𝑏𝑖𝑄)) → 𝐻0(𝐶, 𝐾𝐶)

given by 𝜉𝑖(𝑣)(𝜎) = 𝑣 ∪ 𝜎. More generally, we define 𝜉𝑖 inductively on 0 ≤ 𝑖 ≤ 𝑟 − 1 by

𝜉𝑖 ∶ ker(𝜉𝑖+1) → Hom(𝐻0(𝐶, 𝐿(−𝑎𝑖𝑃 − 𝑏𝑖𝑄))∕𝐻
0(𝐶, 𝐿(−𝑎𝑖+1𝑃 − 𝑏𝑖+1𝑄)),𝐻

1(𝐶, 𝐿(−𝑎𝑖𝑃 − 𝑏𝑖𝑄))),

which comes from the restriction of the natural maps

𝐻1(𝐶, 𝒪𝐶) → Hom(𝐻0(𝐶, 𝐿(−𝑎𝑖𝑃 − 𝑏𝑖𝑄)),𝐻
1(𝐶, 𝐿(−𝑎𝑖𝑃 − 𝑏𝑖𝑄))).

In fact, the locus 𝑉𝑟
𝐚,𝐛

(𝐶, 𝜖, 𝑃, 𝑄) contains the Zariski open subset

𝑉𝑟
𝐚,𝐛

(𝐶, 𝜖, 𝑃, 𝑄)◦ ∶= 𝑊𝜏
2𝑔−2(𝐶, 𝑃, 𝑄)

◦ ∩ 𝒫+ if 𝑟 is odd,

𝑉𝑟
𝐚,𝐛

(𝐶, 𝜖, 𝑃, 𝑄)◦ ∶= 𝑊𝜏
2𝑔−2(𝐶, 𝑃, 𝑄)

◦ ∩ 𝒫− if 𝑟 is even,

where

𝑊𝜏
2𝑔−2(𝐶, 𝑃, 𝑄)

◦ ∶= {𝐿 ∈ Pic
2𝑔−2

(𝐶) ∶ ℎ0(𝐶, 𝐿(−𝑎𝑖𝑃 − 𝑏𝑖𝑄)) = 𝑟 + 1 − 𝑖 for all 𝑖}.

Then, the scheme structure of 𝑉𝑟
𝐚,𝐛

(𝐶, 𝜖, 𝑃, 𝑄) along 𝑉𝑟
𝐚,𝐛

(𝐶, 𝜖, 𝑃, 𝑄)◦ can be seen as the scheme structure on
𝑊𝜏

2𝑔−2(𝐶, 𝑃, 𝑄)
◦ ∩ 𝒫±, as shown in [9, Prop. 4(1)], [20, Section 2].

Lemma 4.1. The tangent space 𝑇𝐿(𝑊𝜏
2𝑔−2(𝐶, 𝑃, 𝑄)

◦) is isomorphic to ker(𝜉0).

Proof. Similar arguments used for the classical Brill–Noether case with one vanishing point [7, (3.1)] hold for the proof of
Lemma 4.1.
Let 𝐿 be a line bundle on 𝐶 in 𝑊𝜏

2𝑔−2(𝐶, 𝑃, 𝑄)
◦. Let us take an affine covering {𝑈𝑘} of 𝐶 such that the line bundle 𝐿

trivializes over it. We denote by {𝑓𝑘𝑙} the transition functions of the covering. The trivial infinitesimal deformation 𝐶𝜖 of
𝐶 has a covering {𝑈𝑘𝜖}, where𝑈𝑘𝜖 is the deformation of𝑈𝑘, and the deformation 𝐿𝜖 of 𝐿 trivializes by transition functions
of the form 𝑓𝑘𝑙(1 + 𝜖𝑔𝑘𝑙). Since such family {𝑔𝑘𝑙} can be considered as elements of 𝐻1(𝐶, 𝒪𝐶), one can correspond the
deformation 𝐿𝜖 to an element of𝐻1(𝐶, 𝒪𝐶).
Given these setting, we let  denote a section of 𝐿 vanishing with orders 𝑎𝑖 at 𝑃 and 𝑏𝑖 at 𝑄. The section  can be

deformed to a section of 𝐿𝜖 preserving the orders of vanishing on 𝑃 and 𝑄. To be specific, if 𝑃 and 𝑄 are in some 𝑈𝑘, we
can have a section  ′

𝑘
defined on 𝑈𝑘 with vanishing to the orders 𝑎𝑖 on 𝑃 and 𝑏𝑖 on 𝑄 such that

𝑓𝑘𝑙(1 + 𝜖𝑔𝑘𝑙)(𝑘 + 𝜖 ′
𝑘
) = 𝑙 + 𝜖 ′

𝑙

by taking

𝑔𝑘𝑙𝑙 =  ′
𝑙
− 𝑓𝑘𝑙

′
𝑘
.

This, in fact, implies that 𝑔 vanishes in 𝐻1(𝐶, 𝐿(−𝑎𝑖𝑃 − 𝑏𝑖𝑄)), which gives the family {𝑘 + 𝜖 ′
𝑘
} as a section of

𝐿𝜖. An infinitesimal deformation of 𝐻1(𝐶, 𝒪𝐶) lies in ker(𝜉𝑖) for all 𝑖 if and only if it belongs to the tangent space
𝑇𝐿(𝑊

𝜏
2𝑔−2(𝐶, 𝑃, 𝑄)

◦). Hence, we obtain the lemma, since ker(𝜉0) is the subspace of𝐻1(𝐶, 𝒪𝐶) included in all ker(𝜉𝑖). □
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1210 JEON

According to [21, p. 673], the tangent space 𝑇𝐿(𝒫±) of the Prym varieties at 𝐿 is given by

𝑇𝐿(𝒫
±) = 𝐻0(𝐶, 𝐾𝐶 ⊗ 𝜖)∨

𝑝𝑡

��→ 𝐻0(𝐶, 𝐾𝐶)
∨.

Here, 𝑝𝑡 is the transpose of the projection map 𝑝. So, with Lemma 4.1, we get the tangent space

𝑇𝐿(𝑉
𝑟
𝐚,𝐛

(𝐶, 𝜖, 𝑃, 𝑄)◦) = ker(𝜉0) ∩ 𝐻0(𝐶, 𝐾𝐶 ⊗ 𝜖)∨. (4.2)

Since 𝜉0 is the transpose of 𝜇, ker(𝜉0) = Im(𝜇)⟂. Then, the right-hand side of (4.2) becomes Im(𝜇)⟂ ∩ 𝐻0(𝐶, 𝐾𝐶 ⊗ 𝜖)∨ so
that

𝑇𝐿(𝑉
𝑟
𝐚,𝐛

(𝐶, 𝜖, 𝑃, 𝑄)◦) = Im(𝜇)⟂.

In fact, by the Riemann–Roch formula, we have

ℎ0(𝐶, 𝐾𝐶 ⊗ 𝐿∨(𝑎𝑖𝑃 + 𝑏𝑖𝑄)) = 𝑟 + 1 − 𝑖 + 𝑎𝑖 + 𝑏𝑖 for 0 ≤ 𝑖 ≤ 𝑟.

We know that

dim 𝐻0(𝐶, 𝐾𝐶 ⊗ 𝜖) = dim Im(𝜇) + dim ker(𝜇
𝑡
).

We denote by |𝐚| the sum of all 𝑎𝑖s and |𝐛| the sum of 𝑏𝑖s. Since the dimension of the domain of 𝜇 is |𝐚| + |𝐛| and
dim(𝐻0(𝐶, 𝐾𝐶 ⊗ 𝜖)) = 𝑔 − 1, we can deduce the dimension of the tangent space 𝑇𝐿(𝑉𝑟

𝐚,𝐛
(𝐶, 𝜖, 𝑃, 𝑄)◦) as

dim(𝑇𝐿(𝑉
𝑟
𝐚,𝐛

(𝐶, 𝜖, 𝑃, 𝑄)◦)) = 𝑔 − 1 − |𝐚| − |𝐛| + dim ker(𝜇).

Proposition 4.2. Let 𝐿 ∈ 𝑉𝑟
𝐚,𝐛

(𝐶, 𝜖, 𝑃, 𝑄)◦. Then, we have

dim𝐿(𝑉
𝑟
𝐚,𝐛

(𝐶, 𝜖, 𝑃, 𝑄)) ≤ 𝑔 − 1 − |𝐚| − |𝐛| + dim ker(𝜇).

Definition 4.3. For general points 𝑃 and 𝑄 in the étale double cover 𝐶, a quadruple (𝐶, 𝜖, 𝑃, 𝑄) satisfies the coupled
Prym–Petri condition if 𝜇 is injective for all 𝐿 ∈ 𝑉𝑟

𝐚,𝐛
(𝐶, 𝜖, 𝑃, 𝑄) such that ℎ0(𝐶, 𝐿(−𝑎𝑖𝑃 − 𝑏𝑖𝑄)) = 𝑟 + 1 − 𝑖 for all 𝑖.

Proposition 4.2 and the inequality on the dimension of the two-pointed Prym–Brill–Noether loci in Corollary 1.2 give
rise to the following proposition.

Proposition 4.4. Suppose that (𝐶, 𝜖, 𝑃, 𝑄) satisfies the coupled Prym–Petri condition, then 𝑉𝑟
𝐚,𝐛

(𝐶, 𝜖, 𝑃, 𝑄) is either empty,
or smooth of dimension 𝑔 − 1 − |𝐚| − |𝐛| at 𝐿 ∈ 𝑉𝑟

𝐚,𝐛
(𝐶, 𝜖, 𝑃, 𝑄) such that ℎ0(𝐶, 𝐿(−𝑎𝑖𝑃 − 𝑏𝑖𝑄)) = 𝑟 + 1 − 𝑖 for all 𝑖.

5 GENERAL CASE

The ultimate goal of this section is to prove Theorem 5.5. We adeptly draw upon and refine concepts from the unpointed
case as outlined in [21] and the pointed case in [20]. Moreover, we investigate the adaptation of the classical Brill–Noether
case as explored in [10] and pointed Brill–Noether case [7], in order to establish the proof of Theorem 5.5 in the context of
two-pointed Brill–Noether case.
Let us first consider a quadruple (𝒞, 𝜖, 𝑃, 𝑄), which arises from the geometric generic fiber of a family, as

described below.
We denote by 𝑇 = Spec() the spectrum of a discrete valuation ring  with parameter 𝑡. It has a special point at 0 and

a generic point at 𝜂. We should note that 𝑇 has trivial Picard group, which will be used later. Let 𝜙 ∶ 𝒞 → 𝑇 indicate a
flat projective family with a smooth surface 𝒞. This family satisfies the following conditions: (i) the generic fiber 𝒞𝜂 is
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JEON 1211

F IGURE 1 A graphical representation of the special fiber 𝒞0 and the étale double covering 𝒞̃0 → 𝒞0.

smooth and geometrically irreducible, and (ii) the special fiber 𝒞0 is a reduced curve of arithmetic genus 𝑔. It consists of
a sequence of smooth components, which can be either rational components or elliptic curves denoted as 𝐸1, … , 𝐸𝑔, as in
Figure 1. The special fiber only has ordinary double points as singularities. It is required further that for 1 ≤ 𝑖 ≤ 𝑔, each
𝐸𝑖 intersect the other components of 𝒞0 at the two points 𝑃𝑖 and 𝑄𝑖 . Here, 𝑃𝑖 − 𝑄𝑖 ∈ Pic

0
(𝐸𝑖) is not torsion.

Of significance here is the following property exhibited by such families: when considering a dominant morphism
𝑇′ → 𝑇 of spectra of discrete valuation rings, the family𝒞′ → 𝑇′ acquired through base extension andminimal resolution
of singularities results in a special fiber 𝒞′

0 that satisfies the same conditions as 𝒞0.
If necessary, we extend the base to assume the existence of a line bundle 𝜖 on𝒞 with 𝜖2 ≅ 𝒪𝒞 . In addition, its restriction

𝜖𝜂 on 𝒞𝜂 is nontrivial, while the restriction to 𝒞0 is non-trivial only on 𝐸𝑔. We define 𝒞̃ ∶= Spec(𝒪𝒞 ⊕ 𝜖), and the ring
structure on 𝒞̃ arises due to the isomorphism 𝜖2 ≅ 𝒪𝒞 . This ensures that 𝜋 ∶ 𝒞̃ → 𝒞 acts as an étale double covering
map over 𝑇, with the generic fiber 𝒞̃𝜂 smooth and geometrically irreducible, and the special fiber 𝒞̃0, a reduced curve
of arithmetic genus 2𝑔 − 1 depicted as Figure 1. That is, the special fiber consists of smooth components arranged in a
chain, some being rational and others elliptic, with only ordinary double points as singularities. We denote these elliptic
components by 𝐸′

𝑖
, 𝐸′′

𝑖
for 𝑖 = 1, … , 𝑔 − 1, and 𝐸𝑔. When the map 𝜋 is restricted over each curve 𝐸𝑖 , it forms a reducible

double covering𝐸′
𝑖
⊔ 𝐸′′

𝑖
→ 𝐸𝑖 , where both𝐸′

𝑖
and𝐸′′

𝑖
are isomorphic to𝐸𝑖 . In addition, restricting𝜋 over𝐸𝑔 gives rise to an

irreducible double covering 𝐸𝑔 → 𝐸𝑔. Especially, the difference between the preimages of two points where 𝐸𝑔 intersects
the remaining curve 𝒞0 corresponds to a 2-torsion point in the Jacobian Jac(𝐸𝑔).
Then, we carefully pick sections 𝑃 ∶ 𝑇 → 𝒞̃ and 𝑄 ∶ 𝑇 → 𝒞̃ such that the corresponding points 𝑃0 and 𝑄0 are in a

rational component that splits the chain of 𝒞̃0, resulting in a connected component with an arithmetic genus of 2𝑔 − 1.
Presented below is an illustrative diagram encapsulating the maps:

5.1 On the quadruple

To prove Theorem 5.5, we need to establish Theorem 5.4, which necessitates certain preparatory setups and lemmas
covered in the following sections: Sections 5.1, 5.2, and 5.3.
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1212 JEON

The relevant coupled Prym–Petri map for Theorem 5.4 can be described as follows. Let 𝑉𝑟
𝐚,𝐛

(𝒞𝜂, 𝑃𝜂, 𝑄𝜂) be the two-
pointed Prym–Brill–Noether loci associated with 𝒞𝜂 with two points 𝑃𝜂 and 𝑄𝜂. We considerℒ𝜂 ∈ 𝑉𝑟

𝐚,𝐛
(𝒞𝜂, 𝑃𝜂, 𝑄𝜂) and

ℳ𝜂 ∶= 𝜄∗ℒ𝜂. Here, one may readℳ𝜂 as 𝐾𝒞̃𝜂
⊗ℒ∨

𝜂 . Suppose ℎ0(𝒞̃𝜂,ℒ𝜂(−𝑎𝑖𝑃𝜂 − 𝑏𝑖𝑄𝜂)) = 𝑟 + 1 − 𝑖 for each 𝑖, and take
sections

𝜎𝑖 ∈ 𝜙∗ℒ𝜂(−𝑎𝑖𝑃𝜂 − 𝑏𝑖𝑄𝜂)∖𝜙∗ℒ𝜂(−𝑎𝑖+1𝑃𝜂 − 𝑏𝑖+1𝑄𝜂) for 0 ≤ 𝑖 ≤ 𝑟 − 1

and 𝜎𝑟 ∈ 𝜙∗ℒ𝜂(−𝑎𝑟𝑃𝜂 − 𝑏𝑟𝑄𝜂). As before, we have the composition

𝜄∗𝜙∗ℒ𝜂(−𝑎𝑖𝑃𝜂 − 𝑏𝑖𝑄𝜂) ↪ 𝜄∗𝜙∗ℒ𝜂

≅
�→ 𝜙∗ℳ𝜂 ↪ 𝜙∗ℳ𝜂(𝑎𝑖𝑃𝜂 + 𝑏𝑖𝑄𝜂). (5.1)

The coupled Prym–Petri map forℒ𝜂 becomes

𝜇𝜂 ∶

𝑟⨁
𝑖=0

⟨𝜎𝑖⟩⊗ 𝜙∗ℳ𝜂(𝑎𝑖𝑃𝜂 + 𝑏𝑖𝑄𝜂)∕𝜄
∗𝜙∗ℒ𝜂(−𝑎𝑖𝑃𝜂 − 𝑏𝑖𝑄𝜂) → 𝜙∗(𝐾𝒞𝜂

⊗ 𝜖). (5.2)

The map 𝜇𝜂 can be extended to a map over 𝑇. Since the map 𝜇𝜂 is defined on a subspace of

𝑟⨁
𝑖=0

⟨𝜎𝑖⟩⊗ 𝜙∗ℳ𝜂(𝑎𝑖𝑃𝜂 + 𝑏𝑖𝑄𝜂) ⊆

𝑟⨁
𝑖=0

𝜙∗ℒ𝜂(−𝑎𝑖𝑃𝜂 − 𝑏𝑖𝑄𝜂) ⊗ 𝜙∗ℳ𝜂(𝑎𝑖𝑃𝜂 + 𝑏𝑖𝑄𝜂),

we extend the line bundlesℒ𝜂,ℒ𝜂(−𝑎𝑖𝑃𝜂 − 𝑏𝑖𝑄𝜂) andℳ𝜂(𝑎𝑖𝑃𝜂 + 𝑏𝑖𝑄𝜂) over 𝒞̃.
As in [21, Equation (2.7)], the following possible base extension and minimally resolving the singularities, one can

extend the line bundleℒ𝜂 on 𝒞̃𝜂 to a line bundleℒ on 𝒞̃. Here, Nm(ℒ) is in fact given by 𝐾𝒞∕𝑇 twisted by a line bundle
associated with a linear combination of the components of𝒞0. We may assume that the component 𝐸𝑔 is not included in
the linear combination, since the Picard group of 𝑇 is trivial so that 𝒪𝒞(𝒞0) ≅ 𝒪𝒞 . Due to Nm(𝒪𝐶(𝐸

′
𝑖
)) = Nm(𝒞̃(𝐸′′

𝑖
)) ≅

𝒞(𝐸𝑖) for 1 ≤ 𝑖 ≤ 𝑔 − 1 and similarly for all the rational components of 𝒞̃0, after a suitable twist, we can assumeNm(ℒ) ≅

𝐾𝒞∕𝑇 from this point forward.
Let 𝑌 be any component of 𝒞̃0. By using the theory of limit linear series [10], the line bundle ℒ𝜂 over 𝒞̃𝜂 can be

extended to a line bundleℒ𝑌 over 𝒞̃. This extension involves twisting a line bundleℒ on 𝒞̃ with an appropriate linear
combination of the components of 𝒞̃0. The extended line bundleℒ𝑌 has degree 0 on the components of the special fiber
𝒞̃0 apart from 𝑌. Similarly, we have line bundles over 𝒞 that are extensions of line bundles on 𝒞𝜂. Further we observe
that 𝜄∗(ℒ𝑌) ≅ (𝜄∗ℒ)𝜄(𝑌) and Nm(ℒ𝑌) ≅ Nm(ℒ)𝜋(𝑌) as in [21, p. 677].
Additionally, as an analogous result from [20, p. 11] for the pointed case, we have extensions for the two-pointed cases as

follows. For each 𝑖, we consider the extensionsℒ𝑖
𝐸𝑔
ofℒ𝜂(−𝑎𝑖𝑃𝜂 − 𝑏𝑖𝑄𝜂),ℳ𝑖

𝐸𝑔
ofℳ𝜂(𝑎𝑖𝑃𝜂 + 𝑏𝑖𝑄𝜂),ℒ𝐸𝑔

ofℒ𝜂, andℳ𝐸𝑔

ofℳ𝜂 over 𝒞̃ such that those bundles have degree 0 on all the components of 𝒞̃0 other than 𝐸𝑔. Then, we have inclusions

𝜙∗ℒ
𝑖
𝐸𝑔

↪ 𝜙∗ℒ𝜂(−𝑎𝑖𝑃𝜂 − 𝑏𝑖𝑄𝜂) and 𝜙∗ℳ
𝑖
𝐸𝑔

↪ 𝜙∗ℳ𝜂(𝑎𝑖𝑃𝜂 + 𝑏𝑖𝑄𝜂)

of 𝒪𝑇-submodules. Especially, given the inclusion

𝜙∗ℒ𝜂(−𝑎𝑖+1𝑃𝜂 − 𝑏𝑖+1𝑄𝜂) ⊆ 𝜙∗ℒ𝜂(−𝑎𝑖𝑃𝜂 − 𝑏𝑖𝑄𝜂),

there are integers 𝛼𝑖 such that the conditions

𝑡𝛼𝑖𝜎𝑖 ∈ 𝜙∗ℒ
𝑖
𝐸𝑔
∖𝜙∗ℒ

𝑖+1

𝐸𝑔
for 𝑖 = 0, … , 𝑟 − 1

and 𝑡𝛼𝑟𝜎𝑟 ∈ 𝜙∗ℒ
𝑟
𝐸𝑔
are satisfied on 𝐸𝑔 as in [10, Lemma 1.2]. We note that {𝑡𝛼𝑖𝜎𝑖}𝑖 forms a basis of 𝜙∗ℒ0

𝐸𝑔
. We let

𝜎𝑖 ∶= 𝑡𝛼𝑖𝜎𝑖 for all 𝑖.
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JEON 1213

Then, from the product of sections, one can deduce the map

𝜇 ∶
⨁
𝑖

⟨𝜎𝑖⟩⊗ 𝜙∗ℳ
𝑖
𝐸𝑔
∕𝜄∗𝜙∗ℒ

𝑖
𝐸𝑔

→ 𝜙∗(𝐾𝒞𝜂
⊗ 𝜖)

and this provides (5.2) over 𝜂. In particular, we have the following inclusion:

𝜄∗𝜙∗ℒ
𝑖
𝐸𝑔

↪ 𝜙∗ℳ
𝑖
𝐸𝑔

(5.3)

of 𝒪𝑇-submodules obtained by (5.1).

5.2 The kernel of the coupled Prym–Petri map

In this section, we would like to investigate a particular situation: given 𝜌 ∈ ker(𝜇𝜂), we assume 𝜌 ≠ 0. Then, there is a
unique integer 𝛾 satisfying

𝑡𝛾𝜌 ∈
⨁
𝑖

⟨𝜎𝑖⟩⊗ 𝜙∗ℳ
𝑖
𝐸𝑔
∖𝑡

(⟨𝜎𝑖⟩⊗ 𝜙∗ℳ
𝑖
𝐸𝑔

)
.

Indeed, 𝑡𝛾𝜌 lies in the kernel of 𝜇, since the element 𝜌 is in the kernel of 𝜇𝜂. For each 𝑖, we consider restrictions to

𝐿𝑖 ∶= Im

(
𝜙∗ℒ

𝑖
𝐸𝑔

→ 𝐻0

(
ℒ𝑖

𝐸𝑔
⊗ 𝒪𝐸𝑔

))
,

𝑀𝑖 ∶= Im

(
𝜙∗ℳ

𝑖
𝐸𝑔

→ 𝐻0

(
ℳ𝑖

𝐸𝑔
⊗ 𝒪𝐸𝑔

))
.

(5.4)

We denote by 𝜎𝑖 ∈ 𝐿𝑖 the image of 𝜎𝑖 under the restriction 𝜙∗ℒ𝑖
𝐸𝑔

→ 𝐿𝑖 , and 𝜌 the image of 𝑡𝛾𝜌 under the map

⨁
𝑖

⟨𝜎𝑖⟩⊗ 𝜙∗ℳ
𝑖
𝐸𝑔

→
⨁
𝑖

⟨𝜎𝑖⟩⊗𝑀𝑖.

We know from the assumption that

𝜌 ≠ 0 in
⨁
𝑖

⟨𝜎𝑖⟩⊗𝑀𝑖∕𝜄∗𝐿𝑖, (5.5)

which is deduced by the inclusion 𝜄∗𝐿𝑖 ↪ 𝑀𝑖 via (5.3).
Before establishing the proof of Lemma 5.2 which concerns the inequality involving the sum of the orders of 𝜌 at 𝑃′𝑔

and 𝑄′
𝑔 (resp. 𝑃′′𝑔 and 𝑄′′

𝑔 ), we need Lemma 5.1. Let 𝑋 be a smooth surface and Φ ∶ 𝑋 → 𝑇 = Spec() be a flat projective
family. Here,  is a discrete valuation ring whose parameter is 𝑡. Let 𝑋0 is the fiber over a special point 𝑡 = 0.

Lemma 5.1. Let 𝑌 and 𝑍 be two components of 𝑋0 such that 𝑌 and 𝑍 meet at 𝑝. Let 𝑞1, 𝑞2, … , 𝑞𝑠 be points on 𝑌 for some 𝑠,
where 𝑞𝑖 ≠ 𝑝. If 𝛼 is the unique integer such that

𝑡𝛼𝜎 ∈ Φ∗ℒ𝑍∖𝑡Φ∗ℒ𝑍

for a line bundleℒ𝑍 on 𝑍, then

ord𝑞1(𝜎|𝑌) +⋯+ ord𝑞𝑗 (𝜎|𝑌) ≤ 𝛼

for 1 ≤ 𝑗 ≤ 𝑠.
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1214 JEON

Proof. It follows [10, Proof of Proposition 1.1] with

deg ℒ𝑌|𝑌 = ord𝑞1(𝜎|𝑌) +⋯+ ord𝑞𝑗 (𝜎|𝑌) + ord𝑝(𝜎|𝑌) + ∑
𝑞∈𝑌∖{𝑝,𝑞1,…,𝑞𝑗}

ord𝑞(𝜎|𝑌).
□

Now, we are ready to show the following lemma. Let 𝑃′𝑔 and𝑄′
𝑔 be intersection points of 𝐸𝑔 with the adjacent connected

components, and let 𝑃′′𝑔 and 𝑄′′
𝑔 be the images of 𝑃′𝑔 and 𝑄′

𝑔 under the involution 𝜄, respectively, as in Pig. 1.

Lemma 5.2. If 𝜌 ∈ ker(𝜇𝜂), then we have

ord𝑃′𝑔 (𝜌) + ord𝑄′
𝑔
(𝜌) ≥ 2𝑔 − 2 and ord𝑃′′𝑔 (𝜌) + ord𝑄′′

𝑔
(𝜌) ≥ 2𝑔 − 2. (5.6)

We say the relation (5.6) on 𝜌 if and only if 𝜌 is a linear combination of elements of the form 𝜎𝑖 ⊗ 𝜏𝑗 for 𝜏𝑗 ∈ 𝑀𝑖 where
ord𝑃′𝑔 (𝜎𝑖) + ord𝑄′

𝑔
(𝜎𝑖) + ord𝑃′𝑔 (𝜏𝑗) + ord𝑄′

𝑔
(𝜏𝑗) ≥ 2𝑔 − 2 for all 𝑖, 𝑗.

We borrow some results in [7, Proof of 3.2],[10, Section 3], and [21, p. 679] along with [20, Proof of Lemma 3.4] to verify
Lemma 5.2.

Proof of Lemma 5.2. Let 1 ≤ 𝑘 ≤ 𝑔 − 1. Let 𝑃′
𝑘
and 𝑄′

𝑘
be the intersection points where 𝐸′

𝑘
meets the adjacent components

for 𝑘 = 1,… , 𝑔 − 1, and the connected componentsmeeting𝐸′
𝑘
at𝑃′

𝑘
contains the points𝑃′0 and𝑄

′
0, as described in Figure 1.

By the same argument for [10, Lemma 1.2], it can be assumed that there is a suitable power 𝛼𝑖,𝑘 so that

𝑡𝛼𝑖,𝑘𝜎𝑖 ∈ 𝜙∗ℒ𝐸′
𝑘
(−𝑎𝑖𝑃

′
𝑘
− 𝑏𝑖𝑄

′
𝑘
)∖𝜙∗ℒ𝐸′

𝑘
(−𝑎𝑖+1𝑃

′
𝑘
− 𝑏𝑖+1𝑄

′
𝑘
) (5.7)

for 𝑖 = 0, … , 𝑟 − 1, and 𝑡𝛼𝑟𝜎𝑟 ∈ 𝜙∗ℒ𝐸′
𝑘
(−𝑎𝑟𝑃

′
𝑘
− 𝑏𝑟𝑄

′
𝑘
) on 𝐸′

𝑘
. For 0 ≤ 𝑖 ≤ 𝑟, we let 𝜎𝑖,𝑘 ∶= 𝑡𝛼𝑖,𝑘𝜎𝑖 . Subsequently, there is a

unique integer 𝛾𝑘 for each 𝑘 such that

𝑡𝛾𝑘𝜌 ∈

𝑟⨁
𝑖=0

(⟨𝜎𝑖,𝑘⟩⊗ 𝜙∗ℳ𝐸′
𝑘
(𝑎𝑖𝑃

′
𝑘
+ 𝑏𝑖𝑄

′
𝑘
)∖𝑡

(⟨𝜎𝑖,𝑘⟩⊗ 𝜙∗ℳ𝐸′
𝑘
(𝑎𝑖𝑃

′
𝑘
+ 𝑏𝑖𝑄

′
𝑘
)
))

.

In particular, for 𝑘 = 𝑔, we use 𝐸′
𝑔, 𝜎𝑖,𝑔 and 𝛾𝑔 to indicate 𝐸𝑔, 𝜎𝑖 , and 𝛾 respectively.

We modify some arguments for the unpointed case in [10, Proof of Proposition 1.1, pp. 277–280], and the pointed case
in [7, Proof of 3.2] as well as [20, Proof of Lemma 3.3].
To be precise, by the construction of 𝐚 and 𝐛 (via (2.3, 2.4, 2.5)), (5.7) implies that for each 𝑖, there exists 𝛼𝑖,𝑘 that is 𝛼

𝑄′
𝑘

𝑖,𝑘

or 𝛼
𝑃′
𝑘

𝑖,𝑘
such that either

𝑡
𝛼
𝑄′
𝑘

𝑖,𝑘 𝜎𝑖 ∈ 𝜙∗ℒ𝐸′
𝑘
(−𝑎′𝑢𝑃

′
𝑘
− 𝑏′𝑢𝑄

′
𝑘
)∖𝜙∗ℒ𝐸′

𝑘
(−𝑎′𝑢𝑃

′
𝑘
− 𝑏′𝑢+1𝑄

′
𝑘
) or

𝑡
𝛼
𝑃′
𝑘

𝑖,𝑘 𝜎𝑖 ∈ 𝜙∗ℒ𝐸′
𝑘
(−𝑎′𝑢𝑃

′
𝑘
− 𝑏′𝑢𝑄

′
𝑘
)∖𝜙∗ℒ𝐸′

𝑘
(−𝑎′𝑢+1𝑃

′
𝑘
− 𝑏′𝑢𝑄

′
𝑘
)

for some 𝑢 ∶= 𝑢(𝑖) ∈ {0, … , 𝑟}. Hence,
{
𝛼
𝑄′
𝑘

𝑖,𝑘

}
𝑖∈𝐼

⋃{
𝛼
𝑄′
𝑘

𝑗,𝑘

}
𝑗∈𝐽

with 𝐼 ⊔ 𝐽 = {0, … , 𝑟} is a basis of 𝜙∗ℒ𝐸′
𝑘
(−𝑎0𝑃

′
𝑘
− 𝑏0𝑄

′
𝑘
).

Then, there exists either 𝛾
𝑄′
𝑘

𝑖,𝑘
or 𝛾

𝑃′
𝑘

𝑖,𝑘
such that we have

𝑡
𝛾
𝑄′
𝑘

𝑖,𝑘 𝜌𝑖 ∈ ⟨𝜎𝑖,𝑘⟩⊗ 𝜙∗ℳ𝐸′
𝑘
(𝑎′𝑢𝑃

′
𝑘
+ 𝑏′𝑢𝑄

′
𝑘
)∖𝑡

(⟨𝜎𝑖,𝑘⟩⊗ 𝜙∗ℳ𝐸′
𝑘
(𝑎′𝑢𝑃

′
𝑘
+ 𝑏′𝑢𝑄

′
𝑘
)
)
, or (5.8)

𝑡
𝛾
𝑃′
𝑘

𝑖,𝑘 𝜌𝑖 ∈ ⟨𝜎𝑖,𝑘⟩⊗ 𝜙∗ℳ𝐸′
𝑘
(𝑎′𝑢𝑃

′
𝑘
+ 𝑏′𝑢𝑄

′
𝑘
)∖𝑡

(⟨𝜎𝑖,𝑘⟩⊗ 𝜙∗ℳ𝐸′
𝑘
(𝑎′𝑢𝑃

′
𝑘
+ 𝑏′𝑢𝑄

′
𝑘
)
)
. (5.9)
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JEON 1215

Thus, we set 𝛾𝑘 = max𝑖,𝑗

{
𝛾
𝑄′
𝑘

𝑖,𝑘
, 𝛾

𝑃′
𝑘

𝑗,𝑘

}
. Also, for the first case (5.8), 𝑡𝛾𝜌 = 0 if 𝛾 > 𝛾

𝑄′
𝑘

𝑖,𝑘
and for (5.9), 𝑡𝛾𝜌 = 0 if 𝛾 > 𝛾

𝑃′
𝑘

𝑖,𝑘
. This

enables us to have

𝛾𝑘 ≤ ord𝑃′
𝑘
(𝑡𝛾𝑘𝜌|𝐸′

𝑘
) + ord𝑄′

𝑘
(𝑡𝛾𝑘𝜌|𝐸′

𝑘
).

Furthermore, Lemma 5.1 gives either

ord𝑃′
𝑘−1

(𝜎𝑖|𝐸′
𝑘−1

) + ord𝑄′
𝑘−1

(𝜎𝑖|𝐸′
𝑘−1

) ≤ 𝛼
𝑃′
𝑘

𝑖,𝑘
or

ord𝑃′
𝑘−1

(𝜎𝑖|𝐸′
𝑘−1

) + ord𝑄′
𝑘−1

(𝜎𝑖|𝐸′
𝑘−1

) ≤ 𝛼
𝑄′
𝑘

𝑖,𝑘

(5.10)

for each 𝑖. Following the argument of [10, Lemma 3.2] with its proof as well as the proof of [10, Proposition 3.1], we obtain

ord𝑃′
𝑘−1

(𝜌𝑖|𝐸′
𝑘−1

) + ord𝑄′
𝑘−1

(𝜌𝑖|𝐸′
𝑘−1

) ≤ 𝛾𝑘.

In particular, if equality holds on (5.10), 𝜎𝑖 vanishes on 𝐸′
𝑘−1

only at 𝑃′
𝑘−1

and 𝑄′
𝑘−1

. Then by [21, (2.8)], there is at most
one section of degree 𝛼𝑖,𝑘 vanishing only at 𝑃′𝑘−1 and 𝑄

′
𝑘−1

up to scalars in 𝐸′
𝑘−1

. Hence, with similar arguments as in [10,
pp. 279–280], the assumption 𝜌 ∈ ker(𝜇𝜂) gives rise to

ord𝑃′
𝑘
(𝑡𝛾𝑘+1𝜌|𝐸′

𝑘
) + ord𝑄′

𝑘
(𝑡𝛾𝑘𝜌|𝐸′

𝑘
) ≥ ord𝑃′

𝑘−1
(𝑡𝛾𝑘−1𝜌|𝐸′

𝑘−1
) + ord𝑄′

𝑘−1
(𝑡𝛾𝑘−1𝜌|𝐸′

𝑘−1
) + 2 (5.11)

for 𝑘 = 2,… , 𝑔. As mentioned in [20, Proof of Lemma 3.4] as well as [21], the arguments presented in [7, 10] can be applied
to the families of curves with special fibers consisting of a chain of rational and elliptic curves. So, our choice of points
where the difference of any of two nodal points in 𝐸′

𝑘
is non-torsion in Jac(𝐸′

𝑘
) enables us to have the inequality (5.11).

Thus, from (5.11) for 𝑘 = 2,… , 𝑔, we finally obtain the statement on 𝑃′𝑔 and 𝑄′
𝑔. Similarly, we have the other statement

about 𝑃′′𝑔 and 𝑄′′
𝑔 as 𝑃′′𝑙 and 𝑄

′′
𝑙
can be seen as 𝜄(𝑃′

𝑙
) and 𝜄(𝑄′

𝑙
) with 𝐸′′

𝑙
∶= 𝜄(𝐸′

𝑙
) for 𝑙 = 1, … , 𝑔. □

We recall that the difference 𝑃′𝑔 − 𝑃′′𝑔 and 𝑄′
𝑔 − 𝑄′′

𝑔 are 2-torsion points in Jac(𝐸𝑔). So, there is nothing we can achieve
beyond (5.6) from the above application of the argument presented in [7, 10, 20].
Lemma 5.1 is analogous to [20, Lemma 3.4] for pointed case and [21, (2.20)] for unpointed case. In the subsequent

section, we provide a statement on the vanishing of 𝜌, Lemma 5.3.

5.3 A vanishing statement

For the points 𝑃′𝑔 and 𝑄′
𝑔 on 𝐸𝑔, we have

ℒ𝑖
𝐸𝑔

⊗ 𝒪𝐸 ≅ ℒ𝐸𝑔
⊗ 𝒪𝐸(−𝑎𝑖𝑃

′
𝜂 − 𝑏𝑖𝑄

′
𝜂), and

ℳ𝑖
𝐸𝑔

⊗ 𝒪𝐸 ≅ ℳ𝐸𝑔
⊗ 𝒪𝐸(𝑎𝑖𝑃

′
𝜂 + 𝑏𝑖𝑄

′
𝜂)

(5.12)

fromℒ𝜂(−𝑎𝑖𝑃𝜂 − 𝑏𝑖𝑄𝜂) andℳ𝜂(𝑎𝑖𝑃𝜂 + 𝑏𝑖𝑄𝜂) discussed in §5.1. It is shown in [21, (2.21)] that both line bundlesℒ𝐸𝑔
⊗ 𝒪𝐸𝑔

andℳ𝐸𝑔
⊗ 𝒪𝐸𝑔

exhibit isomorphism to either

𝒪𝐸𝑔
((2𝑔 − 2)𝑃′𝑔) or 𝒪𝐸𝑔

((2𝑔 − 3)𝑃′𝑔 + 𝑃′′𝑔 ). (5.13)

This is derived by the fact that these line bundles (5.13) are different but have the same image as 𝒪𝐸𝑔((2𝑔 − 2)𝑃𝑔) under
the (2 ∶ 1) norm map

Nm ∶ Pic
2𝑔−2

(𝐸𝑔) → Pic
2𝑔−2

(𝐸𝑔),
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1216 JEON

the line bundles (5.13) are invariant under the involution 𝜄 of 𝐸𝑔 from 2𝑃′𝑔 ≡ 2𝑃′′𝑔 in Jac(𝐸𝑔), and the isomorphisms

Nm(ℒ𝐸𝑔
⊗ 𝒪𝐸𝑔

) ≅ 𝒪𝐸𝑔((2𝑔 − 2)𝑃𝑔) and Nm(ℳ𝐸𝑔
⊗ 𝒪𝐸𝑔

) ≅ 𝒪𝐸𝑔((2𝑔 − 2)𝑃𝑔).

Putting together with (5.12), we have the following lemma.

Lemma 5.3. Letℒ𝐸𝑔
⊗ 𝒪𝐸𝑔

andℳ𝐸𝑔
⊗ 𝒪𝐸𝑔

be the line bundles both isomorphic either to one of two line bundles in (5.13).
If

𝜌 ∈

𝑟⨁
𝑖=0

⟨𝜎𝑖⟩⊗𝑀𝑖∕𝜄∗𝐿𝑖

with the property (5.6), then 𝜌 = 0.

Proof. Provided the assumptionℒ𝐸𝑔
⊗ 𝒪𝐸 ≅ ℳ𝐸𝑔

⊗ 𝒪𝐸𝑔
along with (5.4, 5.12), the spaces 𝐿𝑖 and𝑀𝑖 for all 0 ≤ 𝑖 ≤ 𝑟 are

injected into 𝑉 ∶= 𝐻0(ℳ𝐸𝑔
⊗ 𝒪𝐸𝑔

(𝑎𝑟𝑃
′
𝑔 + 𝑏𝑟𝑄

′
𝑔)). To prove this lemma, we find an appropriate basis of 𝑉.

(1) We first consider the case where ℒ𝐸𝑔
⊗ 𝒪𝐸𝑔

≅ ℳ𝐸𝑔
⊗ 𝒪𝐸𝑔

≅ 𝒪𝐸𝑔
((2𝑔 − 2)𝑃′𝑔). We note that 2𝑄′

𝑔 ≡ 2𝑄′′
𝑔 on 𝐸𝑔, and

take points 𝑄1, 𝑅1 ∈ 𝐸𝑔∖{𝑃
′
𝑔, 𝑃

′′
𝑔 , 𝑄

′
𝑔, 𝑄

′′
𝑔 } such that 𝑄1 + 𝑅1 ≡ 𝑄′

𝑔 + 𝑄′′
𝑔 . Let us define the divisors

𝐷2(𝑘+𝑙) ∶= (2𝑔 − 2 + 𝑎𝑟 − 2𝑘)𝑃′𝑔 + 2𝑘𝑃′′𝑔 + (𝑏𝑟 − 2𝑙)𝑄′
𝑔 + 2𝑙𝑄′′

𝑔

for 𝑘 = 0,… , 𝑔 − 1 +
⌊𝑎𝑟
2

⌋
, 𝑙 = 0, … ,

⌊
𝑏𝑟
2

⌋
𝐷2(𝑘+𝑙)+1 ∶= (2𝑔 − 2 + 𝑎𝑟 − 2𝑘)𝑃′𝑔 + 2𝑘𝑃′′𝑔 + (𝑏𝑟 − 3 − 2𝑙)𝑄′

𝑔 + (2𝑙 + 1)𝑄′′
𝑔 + 𝑄1 + 𝑅1

for 𝑘 = 0,… , 𝑔 − 1 +
⌊𝑎𝑟
2

⌋
, 𝑙 = 0, … ,

⌊
𝑏𝑟 − 2

2

⌋
(5.14)

on 𝐸𝑔. Let 𝑒𝑛 be a section in 𝑉 with divisor 𝐷𝑛 for 𝑛 ∈ {0, … , 2𝑔 − 4 + 𝑎𝑟 + 𝑏𝑟, 2𝑔 − 2 + 𝑎𝑟 + 𝑏𝑟}. We note that for any
integers 𝑎, 𝑏, divisors𝐷′

𝑛 = 𝐷𝑛 − 𝑎𝑃′𝑔 + 𝑎𝑄′
𝑔 − 𝑏𝑃′′𝑔 + 𝑏𝑄′′

𝑔 are isomorphic to𝐷𝑛. For instance, it implies that𝐷2(1+0) ≅

𝐷2(0+1) because 𝐷2(1+0) = 𝐷2(0+1) − 2𝑃′𝑔 + 2𝑄′
𝑔. Then we have 2𝑔 − 2 + 𝑎𝑟 + 𝑏𝑟 sections 𝑒𝑛 such that the sum of the

possible vanishing orders at 𝑃′𝑔 and 𝑄′
𝑔 (resp. 𝑃′′𝑔 and 𝑄′′

𝑔 ) are all distinct. Thus, {𝑒𝑛}𝑛 forms a basis of 𝑉. We write

𝜌 =

𝑟⨁
𝑖=0

𝜌𝑖

where 𝜌𝑖 ∈ ⟨𝜎𝑖⟩⊗𝑀𝑖 . We take 𝑖 satisfying 𝜌𝑖 ≠ 0. By Lemma 5.2, we know that

ord𝑃′𝑔 (𝜌𝑖) + ord𝑄′
𝑔
(𝜌𝑖) ≥ 2𝑔 − 2, and

ord𝑃′′𝑔 (𝜌𝑖) + ord𝑄′′
𝑔
(𝜌𝑖) ≥ 2𝑔 − 2.

The basis {𝑒𝑛}𝑛 of 𝑉 leads to the following bases: {𝜐ℎ}ℎ of 𝐻0(ℒ𝐸𝑔
⊗ 𝒪𝐸(−𝑎𝑖𝑃

′
𝜂 − 𝑏𝑖𝑄

′
𝜂)) and {𝜔𝑚}𝑚 of 𝐻0(ℳ𝐸𝑔

⊗

𝒪𝐸(𝑎𝑖𝑃
′
𝜂 + 𝑏𝑖𝑄

′
𝜂)).

We let 𝑐ℎ = ord𝑃′𝑔 (𝜐ℎ) + ord𝑄′
𝑔
(𝜐ℎ). Theway of constructing the basis using the divisors presented in (5.14) implicates

the following equations:

ord𝑃′′𝑔 (𝜐ℎ) + ord𝑄′′
𝑔
(𝜐ℎ) =

{
2𝑔 − 2 − 𝑎𝑖 − 𝑏𝑖 − 𝑐ℎ if 𝑎𝑖 + 𝑏𝑖 + 𝑐ℎ ≡ 0mod 2
2𝑔 − 4 − 𝑎𝑖 − 𝑏𝑖 − 𝑐ℎ if 𝑎𝑖 + 𝑏𝑖 + 𝑐ℎ ≡ 1mod 2.

(5.15)
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JEON 1217

Also, if we assume 𝑑𝑚 = ord𝑃′𝑔 (𝜔𝑚) + ord𝑄′
𝑔
(𝜔𝑚), then we have

ord𝑃′′𝑔 (𝜔𝑚) + ord𝑄′′
𝑔
(𝜔𝑚) =

{
2𝑔 − 2 + 𝑎𝑖 + 𝑏𝑖 − 𝑑𝑚 if 𝑎𝑖 + 𝑏𝑖 + 𝑑𝑚 ≡ 0mod 2
2𝑔 − 4 + 𝑎𝑖 + 𝑏𝑖 − 𝑑𝑚 if 𝑎𝑖 + 𝑏𝑖 + 𝑑𝑚 ≡ 1mod 2.

(5.16)

We know that ⟨𝜎𝑖⟩ ⊆ 𝐻0(ℒ𝐸𝑔
⊗ 𝒪𝐸(−𝑎𝑖𝑃

′
𝜂 − 𝑏𝑖𝑄

′
𝜂)) and𝑀𝑖 ⊆ 𝐻0(ℳ𝐸𝑔

⊗ 𝒪𝐸(𝑎𝑖𝑃
′
𝜂 + 𝑏𝑖𝑄

′
𝜂)). So, one can write 𝜌𝑖 =∑

ℎ,𝑚
𝑧ℎ,𝑚𝜐ℎ ⊗ 𝜔𝑚. As bases {𝜐ℎ}ℎ and {𝜔𝑚}𝑚 have distinct sum of vanishing orders at 𝑃′𝑔 and𝑄𝑔 respectively, we have

𝑧ℎ,𝑚 = 0 for all ℎ,𝑚 such that

ord𝑃′𝑔 (𝜐ℎ) + ord𝑃′𝑔 (𝜔𝑚) + ord𝑄′
𝑔
(𝜐ℎ) + ord𝑄′

𝑔
(𝜔𝑚) < 2𝑔 − 2, and

ord𝑃′′𝑔 (𝜐ℎ) + ord𝑃′′𝑔 (𝜔𝑚) + ord𝑄′′
𝑔
(𝜐ℎ) + ord𝑄′′

𝑔
(𝜔𝑚) < 2𝑔 − 2.

In fact, the conditions ord𝑃′𝑔 (𝜐ℎ ⊗ 𝜔𝑚) + ord𝑄′
𝑔
(𝜐ℎ ⊗ 𝜔𝑚) ≥ 2𝑔 − 2 and ord𝑃′′𝑔 (𝜐ℎ ⊗ 𝜔𝑚) + ord𝑄′′

𝑔
(𝜐ℎ ⊗ 𝜔𝑚) ≥ 2𝑔 − 2

happen when 𝑐ℎ + 𝑑𝑚 ≥ 2𝑔 − 2 as well as

𝑐ℎ + 𝑑𝑚 = 2𝑔 − 2 and 𝑎𝑖 + 𝑏𝑖 + 𝑐ℎ ≡ 𝑎𝑖 + 𝑏𝑖 + 𝑑𝑚 ≡ 0 mod 2. (5.17)

Then, we have

div(𝜐ℎ) = 𝑢1𝑃
′
𝑔 + (𝑑𝑚 − 𝑎𝑖 − 𝑢2)𝑃

′′
𝑔 + (𝑐ℎ − 𝑢1)𝑄

′
𝑔 + (𝑢2 − 𝑏𝑖)𝑄

′′
𝑔 and

div(𝜔𝑚) = (𝑑𝑚 − 𝑢2)𝑃
′
𝑔 + (𝑎𝑖 + 𝑢1)𝑃

′′
𝑔 + 𝑢2𝑄

′
𝑔 + (𝑐ℎ + 𝑏𝑖 − 𝑢1)𝑄

′′
𝑔

for some nonnegative integers 𝑢1 and 𝑢2, where 0 ≤ 𝑢1 ≤ 𝑐ℎ and 𝑏𝑖 ≤ 𝑢2 ≤ 𝑑𝑚 − 𝑎𝑖 . With these setups, we can
conclude that the image of 𝜄∗𝜐ℎ under the composition of the following inclusions:

𝜄∗𝐻0
(
ℒ𝐸𝑔

⊗ 𝒪𝐸𝑔
(−𝑎𝑖𝑃

′
𝑔 − 𝑏𝑖𝑄

′
𝑔)
)
↪ 𝜄∗𝐻0

(
ℒ𝐸𝑔

⊗ 𝒪𝐸𝑔

) ≅
�→ 𝐻0

(
ℳ𝐸𝑔

⊗ 𝒪𝐸𝑔

)
↪ 𝐻0

(
𝐸𝑔

(𝑎𝑖𝑃
′
𝑔 + 𝑏𝑖𝑄

′
𝑔)
)

is contained in ⟨𝜔𝑚⟩. This implies 𝜌𝑖 in ⟨𝜎𝑖⟩⊗ Im
(
𝜄∗𝐿𝑖 ↪ 𝑀𝑖

)
. Thus, it must be that 𝜌 vanishes in

⨁𝑟

𝑖=0
⟨𝜎𝑖⟩⊗

𝑀𝑖∕𝜄∗𝐿𝑖 , as desired.
(2) Next, we take the case where ℒ𝐸𝑔

⊗ 𝒪𝐸𝑔
≅ ℳ𝐸𝑔

⊗ 𝒪𝐸𝑔
≅ 𝒪𝐸𝑔

((2𝑔 − 3)𝑃′𝑔 + 𝑃′′𝑔 ). Similarly, we have that 2𝑄′
𝑔 ≡ 2𝑄′′

𝑔

on 𝐸𝑔 such that we have 𝑄2, 𝑅2 ∈ 𝐸𝑔∖{𝑃
′
𝑔, 𝑃

′′
𝑔 , 𝑄

′
𝑔, 𝑄

′′
𝑔 } such that 𝑄2 + 𝑅2 ≡ 𝑃′𝑔 + 𝑃′′𝑔 . We define divisors

𝐷2(𝑘+𝑙)+1 ∶= (2𝑔 − 3 + 𝑎𝑟 − 2𝑘)𝑃′𝑔 + (2𝑘 + 1)𝑃′′𝑔 + (𝑏𝑟 − 2𝑙)𝑄′
𝑔 + (2𝑙 + 1)𝑄′′

𝑔

for 𝑘 = 0,… , 𝑔 +

⌊
𝑎𝑟 − 3

2

⌋
, 𝑙 = 0, … ,

⌊
𝑏𝑟
2

⌋
𝐷2(𝑘+𝑙) ∶= (2𝑔 − 4 + 𝑎𝑟 − 2𝑘)𝑃′𝑔 + 2𝑘𝑃′′𝑔 + (𝑏𝑟 − 2𝑙)𝑄′

𝑔 + 2𝑙𝑄′′
𝑔 + 𝑄2 + 𝑅2

for 𝑘 = 0,… , 𝑔 − 2 +
⌊𝑎𝑟
2

⌋
, 𝑙 = 0, … ,

⌊
𝑏𝑟
2

⌋
(5.18)

on 𝐸𝑔. We follow the same argument as before, but using

ord𝑃′′𝑔 (𝜐ℎ) + ord𝑄′′
𝑔
(𝜐ℎ) =

{
2𝑔 − 2 − 𝑎𝑖 − 𝑏𝑖 − 𝑐ℎ if 𝑎𝑖 + 𝑏𝑖 + 𝑐ℎ ≡ 1mod 2
2𝑔 − 4 − 𝑎𝑖 − 𝑏𝑖 − 𝑐ℎ if 𝑎𝑖 + 𝑏𝑖 + 𝑐ℎ ≡ 0mod 2

(5.19)

rather than (5.15), and

ord𝑃′′𝑔 (𝜔𝑚) + ord𝑄′′
𝑔
(𝜔𝑚) =

{
2𝑔 − 2 + 𝑎𝑖 + 𝑏𝑖 − 𝑑𝑚 if 𝑎𝑖 + 𝑏𝑖 + 𝑑𝑚 ≡ 1mod 2
2𝑔 − 4 + 𝑎𝑖 + 𝑏𝑖 − 𝑑𝑚 if 𝑎𝑖 + 𝑏𝑖 + 𝑑𝑚 ≡ 0mod 2

(5.20)
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in place of (5.16). These modifications give

𝑐ℎ + 𝑑𝑚 = 2𝑔 − 2 and 𝑎𝑖 + 𝑏𝑖 + 𝑐ℎ ≡ 𝑎𝑖 + 𝑏𝑖 + 𝑑𝑚 ≡ 1 mod 2.

instead of (5.17). Then, the rest of the arguments works as before. □

5.4 Proof of main result

With the groundwork set from previous sections, we can now proceed to prove Theorem 5.4.

Theorem 5.4. The quadruple (𝒞𝜂, 𝜖𝜂, 𝑃𝜂, 𝑄𝜂) satisfies the coupled Prym–Petri condition.

Proof. ℒ𝜂 ∈ 𝑉𝑟
𝐚,𝐛

(𝒞𝜂, 𝑃𝜂, 𝑄𝜂) such that ℎ0(𝐶𝜂,ℒ𝜂(−𝑎𝑖𝑃𝜂 − 𝑏𝑖𝑄𝜂)) = 𝑟 + 1 − 𝑖 for each 𝑖. Let 𝜌 be an element of the ker-
nel of the coupled Prym–Petri map 𝜇𝜂 (5.2). Suppose 𝜌 ≠ 0. Then, 𝜌 ≠ 0 by (5.5). However, this gives a contradiction for
Lemma 5.3 with Lemma 5.2. Hence, we obtain 𝜌 = 0. □

The following is our main result, the coupled Prym–Petri theorem.

Theorem 5.5. Let 𝐶 be a general curve of genus 𝑔 and 𝜖 an arbitrary non-trivial 2-torsion point in the Jacobian Jac(𝐶). For
general points 𝑃 and 𝑄 in the étale double cover 𝐶, the quadruple (𝐶, 𝜖, 𝑃, 𝑄) satisfies the coupled Prym–Petri condition.

Proof. Since it is an open condition on families of quadruple (𝐶, 𝜖, 𝑃, 𝑄) to satisfy the coupled Prym–Petri condition, the
statement can be proved by the existence of a quadruple (𝐶, 𝜖, 𝑃, 𝑄)with 𝜖 ≠ 0where the coupled Prym–Petri condition is
satisfied. This is based on the fact that themoduli space of quadruple (𝐶, 𝜖, 𝑃, 𝑄)with a fixed genus and 𝜖 ≠ 0 is irreducible,
as in [20, Lemma 3.2].
So, the statement can be established by proving that the geometric generic fiber satisfies the coupled Prym–Petri con-

dition. Let us consider the geometric generic fiber (𝒞𝜂, 𝜖𝜂, 𝑃𝜂, 𝑄𝜂), where 𝒞𝜂 ∶= 𝒞𝜂 ⊗ 𝑘(𝜂), 𝜖𝜂 ∶= 𝜖𝜂 ⊗ 𝑘(𝜂), and 𝑃𝜂, 𝑄𝜂

are the points in 𝒞̃𝜂 ∶= 𝒞̃𝜂 ⊗ 𝑘(𝜂) induced by 𝑃 and 𝑄, respectively. In fact, it is evident from [10, p. 272] that any line
bundle on 𝒞𝜂 is constructed from a line bundle over some finite extension of 𝑘(𝜂). Henceforth, Theorem 5.4 concludes
the statement by finite base change and change of notation. □

Combined with Proposition 4.4 and Theorem 5.5, we complete our second main Theorem 1.3.
As Corollary 1.4, we have the condition on the non-emptiness of the pointed Prym–Brill–Noether loci 𝑉𝑟

𝐚,𝐛
(𝐶, 𝑃, 𝑄).

In Corollary 1.4, if 𝑔 − 1 = |𝐚 + 𝐛|, then 𝑉𝑟
𝐚,𝐛

(𝐶, 𝜖, 𝑃, 𝑄) associated with a general curve 𝐶 with general points 𝑃,𝑄 is
given by a finite number of distinct points. This number can be expressed by the degree of the class of 𝑉𝑟

𝐚,𝐛
(𝐶, 𝜖, 𝑃, 𝑄). By

the Poincaré formula, deg(𝜉𝑔−1) = (𝑔 − 1)! = |𝐚 + 𝐛|! so that the degree of the class turns out to be
deg

([
𝑉𝑟
𝐚,𝐛

(𝐶, 𝜖, 𝑃′, 𝑄′)
])

= |𝑎 + 𝑏|!2|𝐚+𝐛|−𝓁◦ 𝑟∏
𝑖=0

1

(𝑎𝑖 + 𝑏𝑖)!

∏
𝑗<𝑖

𝑎𝑖 + 𝑏𝑖 − 𝑎𝑗 − 𝑏𝑗

𝑎𝑖 + 𝑏𝑖 + 𝑎𝑗 + 𝑏𝑗
. (5.21)

Let 𝜍 = (𝜍1 > ⋯ > 𝜍𝓁) be a strict partition such that 𝜍𝓁 > 0. The strict partition is corresponding to a shifted shape
consisting of 𝜍𝑖 boxes in 𝑖th row where each 𝑖th row is shifted 𝑖 steps to the right. The standard Young tableau (SYT) of
shifted shape 𝜍 is a filling of 𝜍 using 1, … , |𝜍| such that the entries in each row and column are strictly increasing. For
instance, if 𝜍 = (4, 2, 1), all the possibilities of SYT of 𝜍 are

As in [20, p. 3], the degree (5.21) can be obtained by

2|𝐚+𝐛|−𝓁◦#{SYT of shifted shape (𝑎𝑟 + 𝑏𝑟, … , 𝑎0 + 𝑏0)}.

In addition, if 𝑎0 + 𝑏0 = 0, we use the strict partition (𝑎𝑟 + 𝑏𝑟 > ⋯ > 𝑎1 + 𝑏1) with 𝓁0 = 𝑟 for the degree of the class.
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