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1 | INTRODUCTION

Prym varieties belong to a class of principally polarized abelian varieties associated with étale double covers of algebraic
curves. The Prym-Brill-Noether loci, which are the Brill-Noether loci for Prym varieties, were introduced by Welters
[21]. Later, these loci were generalized to the Prym-Brill-Noether loci with special vanishing at one point by the author
[14] and Tarasca [20], so-called, pointed Prym-Brill-Noether loci. The scheme structure can be understood as degeneracy
loci of Lie type D. To be specific, De Concini-Pragacz [9] regarded the Prym-Brill-Noether loci as the degeneracy loci,
characterized by a rank condition on the intersection of two maximal isotropic subbundles in a vector bundle with respect
to a non-degenerate quadratic form. The pointed cases [14, 20] were presented as the degeneracy loci by rank conditions on
the intersection of a maximal isotropic subbundle of the vector bundle and an isotropic flag associated with a fixed point.

The goal of this paper is to study the Prym-Brill-Noether loci with special vanishing at two points, providing some
analogous results from the pointed case in [14, 20]. We not only identify the two-pointed Prym-Brill-Noether loci as being
associated with a certain vexillary degeneracy loci of Lie type D in expected dimension, but also give a formula for the
class of the two-pointed Prym-Brill-Noether loci in connective K-theory. Furthermore, we establish that the expected
dimensions of the two-pointed Prym-Brill-Noether loci hold generically.

In concrete terms, the two-pointed Prym-Brill-Noether locus is defined as follows. Let C be a smooth algebraic curve
of genus g over an algebraically closed field K of characteristic different from two. Let 7 : C — C be an étale double
cover of C, which is determined by a nontrivial 2-torsion point ¢ in Jac(C). Leta’ = (0 < a; < a} < --- < a; < 2g—2)and
b’ = (0 < by < b; < -+ < by <2g — 2) be strictly increasing sequences such that

. ’ Y n _
min {a/,, —a/,b],, —b]} =1 1.1)

Math. Nachr. 2025;298:1201-1219. www.mn-journal.org © 2025 Wiley-VCH GmbH. 1201


https://orcid.org/0000-0002-9720-3634
mailto:minyoung.jeon@uga.edu
http://www.mn-journal.org
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fmana.202300581&domain=pdf&date_stamp=2025-02-18

1202 MATHEMATISCHE JEON
NACHRICHTEN

fori =0, ...,r — 2. For points P and Q in C, the locus V;, b,(C, €,P,Q) in a Prym variety % for odd r (or &~ for even r) is
defined to be

V!, (C.e,P,Q) 1= {L € P* | hO%(C,L)=r +1 (mod 2), h0(5,L(—b}Q’ —a/P)))>r+1—j—iforall i,j} )

Indeed, set-theoretically, we can recover Prym-Brill-Noether loci from Welters [21] by taking a’ = (0,...,r) and b’ =
(0, ..., 1), and one may forget either a pair (P, a) or (Q, b’) with the condition (1.1) to obtain the pointed Prym-Brill-Noether
loci in [14 Section 4.1], [20, Section 2]. From an analysis of degeneracy loci of type D in Section 2, the conditions spec-
ified by a’ and b’ for V" o b,(C €, P, Q) are equivalent to the conditions associated with modified sequences a and b for
VV (€€, P, Q) defined by

n(C,L(-b;Q—a;P) >r+1—i fori=0,..,r

in 9*. This enables us to impose the scheme structure of a vexillary degeneracy loci of type D on the two-pointed Prym-
Brill-Noether loci, generalizing the case a’ = (0,...,r) and b’ = (0, ...,r) in [9]. When the two points P and Q come
together, the locus V; ’b(C, €, P, Q) specializes to a pointed Prym-Brill-Noether locus associated with a strictly increasing
sequence q; + b; fori =0, ..., r, and it is endowed with the scheme structure in [14, 20].

The connective K-theory introduced by Cai [6] for schemes establishes a connection between the Chow groups and
Quillen’s K-theory groups. Dai and Levine [8] explored this notion within the realm of the motivic homotopy theory. In
our work, we employ a simpler variant of the connective K-theory for the scheme: the connective K-cohomology CK*(X)
for an irreducible variety X. See [1, 12, 13] especially for more details in the context in degeneracy loci.

When V;,b(C ,€, P, Q) has the expected dimension g — 1 — |a + b|, the K-theory class formulas for V; ’b(C ,€,P,Q)in the
connective K-theory are stated as follows. Let A be a partition such that

A = Qpy1i+bry1,
and ¢, := ¢(1) be the length of 1, the number of non-zero parts of 1.

Theorem 1.1 (= Theorem 3.1). The dimension ofV; b(C, €, P,Q)isatleastg—1—|a +b|. IfV; b(C, €, P, Q) has dimension
ofg —1—|a + b|, then it is Cohen—-Macaulay, and

|V1,(C.e.P.Q)| = P, .. d(£0); B)
in CK*(P*)[1/2].

The above formula is expressed by a Pfaffian of a skew-symmetric matrix associated with K-theoretic Chern classes, as
derived from the K-theory class formulas for vexillary degeneracy loci of type D in [1, Theorem 4]. Unspecified notations
in the theorem will be defined later in Section 3. As a corollary, we have the following about the class of V’ (C €,P,Q)in
the numerical equivalence ring N*(%%*, K) or the singular cohomology ring H*(%*, C). Let £ be the class of theta divisor
on the Prym variety * in N*(2*, K) or in H*(9%*, C).

Corollary 1.2. Ifdim(V, ,(C,¢,P,Q)) =g —1—|a+b|, thenV,  (C,¢,P,Q) has the class

a; +b; —
r L |a+b|
[Va’b(c,e,P,Q)] zf | | % +b 5 | | aTh +a} +b . 28l (12)

in N*(2*,K) or H*(9*, C). In particular, the dimension of V. b(C €, P,Q)isatleastg—1—|a+Db|.

The right-hand side of (1.2) is supported on V’ b(C €, P, Q) even if the dimension of V' b(C‘ €,P,Q) is greater than
g — 1 — |a + b|. Moreover, with & being ample, the rlght -hand side of (1.2) becomes non-zero whenever g—1—|a+b|>
0. This implies that if g — 1 > |a + b|, the two-pointed Prym-Brill-Noether locus V; »(C, €, P,Q) is not empty and has
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dimension at least g — 1 — |a + b|, for any such a pair (C, ¢, P, Q). Corollary 1.2 recovers the results in [9, Theorem 9] with
=(0,1,..,r)and b’ = (0, 1,...,7), and a two-pointed version analogous to [20, Theorem 1]. The subsequent theorem
confirms that the expected dimension of V; b(C ,€, P, Q) is achieved generically.

Theorem 1.3. Let C be a general curve of genus g, with its étale double cover C associated with ¢, an arbitrary non-trivial
2-torsion point in Jac(C). Let P and Q be general points in C. Then, V' b(C €, P, Q) is either empty or has dimension g — 1 —

la] — |blatL eV’ b(C ¢,P,Q) such that h°(C,L(—a;P —b;Q)) =r+1—iforalli =0,.

We obtain the main theorem presented above using arguments similar to [10, 20, 21], which are used in the proof
of the Gieseker—Petri-type theorem. Theorem 1.3 encompasses the result from [21] concerning the Prym-Brill-Noether
loci. Consequently, we derive conditions for the non-emptiness of the pointed Prym-Brill-Noether loci V; ,(C.€,P,Q), as
follows. ’

Corollary 1.4. Let C be a general curve with its genus equals to g. Let ¢ € Jac(C) be an arbitrary 2-torsion point, and P,Q € C
general points. Then V' b(C €,P,Q)# @ifandonlyifg—1 > |a| + |b|.

In particular, if V, b(C €, P,Q) is nonempty, the dimension of V, b(C €,P,Q)isg—1— |a| — |b| and its class is equal to
the class (1.2) in N*(?]“+ K) and H*(P*, C), where the characterlstlc of K is not equal to 2.

Lastly, our study focuses on the two-pointed Prym-Brill-Noether loci under the condition (1.1), which allows us to
establish Theorem 1.3. In light of constraint (1.1), we take a partial step toward expanding the results on pointed Prym-
Brill-Noether loci by the author [14] and Tarasca [20] to the two-pointed cases. So, it would be interesting to investigate
further on the two-pointed Prym-Brill-Noether loci without (1.1), as a complete generalization of pointed Prym-Brill-
Noether loci. Even more, the study of any motivic version of Prym-Brill-Noether loci with special vanishing at up to two
fixed points could be of considerable interest.

The organization of this paper is outlined in the following manner. In Section 2, we discuss the degeneracy loci of Lie
type D associated to two strictly increasing sequences a’ and b’ satisfying (1.1) in general, and show the connection to the
degeneracy loci associated with the new sequences a and b. In Section 3, we define the two-pointed Prym-Brill-Noether
loci and establish formulas for the K-theory class of the loci in the connective K-theory. In Section 4, we determine a
coupled Prym-Petri map, and Section 5 contains the proof of the coupled version of the Prym-Petri theorem, showing
Theorem 1.3.

2 | THE DEGENERACY LOCI
We consider sequences of integers p’ = (0 < p) < p; <--- < pg)and q' = (0 < g} < q] < -+ < qy), satisfying

min{p;,, = p}.q},, — g} =1
fori =0,..,s —2.

Let V be a vector bundle of rank 2n over a variety X, equipped with a non-degenerate quadratic form. We consider flags
of isotropic subbundles

Ey cEp;_1 C--- CEP6 cV and Fy CFq§_1 C--- ch(r) cv
on X, where the rank of E,; is n — p’ and Fy is n — q'. The locus Vo associated to the sequences p’ and q’ is given by
dim(Eplg nFq;)2s+1—j—i forall i, j. 2.1)
This degeneracy locus (and any locus defined by such conditions in this paper) must be read by the closure of the locus
where equality holds. We further impose an additional condition either dim(Ey N Fy) = 0 (mod 2) or dim(E, N Fy) =1

(mod 2) on Vi . It is worthwhile noting that the conditions for i + j < s are enough to define the locus, since the
remaining ones become trivial.
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Let us analyze the scheme structure of V}y » with some combinatorics and notions about Schubert varieties of Lie type
D in [4, Section 2]. We focus on the locus with the imposed condition dim(E, N Fy) = 0 (mod 2), but the analysis of the
scheme structure with dim(Ey N Fy) = 1 (mod 2) is similar.

Let G be the special orthogonal group SO(V') = SO,,, in dimension 2n. We denote W' as the set of signed permutations
with even number of sign changes in W,, = S,, X {x1}"". Here, S,, is the symmetric group. Often, W, is considered as the
subgroup of S, such that w(i) = m for w € W,,. Note that a indicates —a. For a signed permutation v in W', one can
define a rank function by

rU(a,E) =#{s < b | v(s) > a}

fora €{0,..,n—1}andb e {n—1,..,0,0,..n — 1}, as in [4, p. 10].
Let F1 be an isotropic flag variety parameterizing flags

0OCE,;C--CE CE,CV.

of isotropic subbundles defined on X with respect to the quadratic form. Schubert varieties in the isotropic flag variety (or
a degeneracy locus on a variety with isotropic bundles) are defined by

dim(E, N F,) > ry(a, b), (2.2)

for all @ and 0 < b < n — 1. The rank function is useful to determine the Bruhat order on signed permutations. That is,
for u,v € W}, we have u < v in the Bruhat order if and only if ru(a,E) < rv(a,E) forallaand0<b<n-1.

One can minimize the list of conditions (2.2), as some of them are redundant. Especially, we have a set of triples S =
{(a;, b;, k;)}; where the set of signed permutations u with r, (a, b) > k; has a unique minimum signed permutation v in the
Bruhat order. This enables us to define the Schubert varieties associated with v by

dim(E, N Fy) > k;

for (a;, b, k;) € S.

One example of this set is the essential set by Fulton [11, Lemma 3.10]. In our situation, we choose a reduced list of
conditions as follows. Given any p’ = (p(’), ..,py)andq’ = (q(’), .., qL), we define a triple 7 : = 7(p’, q') of three sequences
p = (pos - Ps)> 4 = (qo» ---»qs) and k = (k, ..., kg) of even length s + 1 by

Ps=D;, qu=¢q, and ky=s+1-2i 23)
Pai+1 =D Qis1 =9, and ky=s+1-2i—1 ifp]  —p/ =1, (2.4)
Pai+1 =Diyp» Quir1 =g, and kyy=s+1-2i—-1 ifq, —q =1 (2.5)

for0 <i < |s/2]. Moreover, if s + 1is odd, we add p_; = q_; = 0 or remove the case when (p(’), q(’)) = (0,0) to have a triple
of even length.

For example, let p’ = (5,8,9,12,14) and q' = (1,2,6,10,11) with s = 4. Since s + 1 = 5 is odd, we set p_; = g_; = 0.
Then, we have p = (0, 5,8, 8,8,9) and q = (0,1, 1, 2, 6, 6) with corresponding k; = s + 1 —i fori = —1,0, ..., s.

For the triple 7 arising this way, we can recover a vexillary signed permutation w : = w(7) by the algorithm in [3, Section
2] after replacing p; and g; by p; + 1and g; + 1, respectively. The corresponding partition 4 is given by p; + g;. The vexillary
element w can be characterized as follows.

Lemma 2.1. The signed permutation w is unique and minimal in Bruhat order such that
ro(@i, p) = #{p <p; 1 w(p)>q}=s+1—i foralli,

and its length is 3 .(p; + q;)-
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We remark that the length is equal to the codimension of the corresponding Schubert variety in the isotropic flag variety.
Let us define a locus V}, 4 by conditions

dim(E,, NFy) >2s+1—i foralli.
Then, the lemma implies that
Vp,q = Vp/,q/

In fact, the procedure (2.3) covers the conditions when i = j in (2.1). Furthermore, both (2.3) and (2.4) contains the case
where dim(E,y NFy)2>s+1-2i—1,since
i+ 1

ro(@s Pl ) =ro(@,pl + 1) > ry(q,p)—12s+1-2i—-1.

Similarly, we can see that the condition dlm(E 'NF, A ) > s+ 1—2i—1isincluded in (2.3) and (2.5). Hence, the scheme

structure of Viy oo =V q is induced by that of a Vexﬂlary Schubert variety associated to w in the flag variety Fl of type D.

3 | THE TWO-POINTED PRYM-BRILL-NOETHER LOCI

In this section, we discuss the Brill-Noether loci in the Prym variety 9* with special vanishings at two points, and
investigate their classes in connective K-theory.

Let C be a smooth algebraic curve of genus g over an algebraically closed field K of characteristic not 2. Let 7 : C — C
be an irreducible étale double covering. Classically, the covering 7 determines a class € of order 2 in Jac(C) such that
7.0 = O¢ @ €. Conversely, any non-trivial 2-torsion point € in Jac(C) defines an irreducible étale double covering 7 :
C = Spec(O¢ @ €) — C. So, we may represent the double covering 7 by the pair (C,¢). In particular, the étale double
covering 77 induces a norm map Nm : Pic2g_2(5) - Piczg_z(C). The scheme-theoretic inverse image Nm_l(KC) of the
canonical class K¢ € Piczg_z(C) is given by the disjoint union

Nm '(Ko) = Pt uP,

of two connected irreducible components * = {L | h°(C,L) = 0 (mod 2)} and P~ = {L | h°(C,L) = 1 (mod 2)}. Both
varieties 2 and &~ are translates of the Prym variety 2(C, ¢) = (Ker(Nm))° of dimension g — 1, the connected compo-
nent of the kernel of Nm : Jac(C) — Jac(C) containing the origin. For more details about Prym varieties, see [5, App. C]
and [15]. We denote by 9= either one of " or 2~ and not the union of these varieties.

We fix two points P and Q on the double cover C with P — Q nontorsion. For L € %%, let

=0<ay<a)<--<a <2g-2) and
=(0<b)<b < <b <2g-2)
be strictly increasing sequences such that
min{a/,  —a/,b/  —b}=1

fori =0,...,r — 2. For the above a’ and b’, the two-pointed Prym~Brill-Noether loci V;, b,(C, €,P,Q) C 9* of line bundles
associated with (C, ¢, P, Q) is defined by

Vi, w(C.e,P,Q) 1= {L e Nm '(Kc) | h%(C,L) = r + 1 (mod 2), h°(5,L(—b;.Q’ —a/P))>r+1-j—iforalli, j}
(3.1)

in Pic’%(0).
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Now, we provide the scheme structure of the two-pointed Prym-Brill-Noether loci as generalized version of the
unpointed Prym-Brill-Noether loci [9], and analogous result to the pointed case in [20].

Let £ be the Poincaré line bundle on Piczg_z(a) x C. We consider the double covering 1X 7 : Piczg_z(("?') xC —
Piczg_z(é) X C induced by 7, and set £ = (1 X 7),.L. Then &€|g=yc, the restriction of £ to P* x C is a rank 2 vector bun-
dle. The vector bundle &| 4=+ is equipped with a nondegenerate quadratic form Q. (See [15, p. 343], [16, p. 185], and [9, p.
699].)

Letq, : Pic®®*(C) x C — Pic*®* *(C) be the projection to the first factor and g, : Pic®**(C) x C — C the projection to
the second factor. Let v; : Piczg_z(f) xC — Piczg_z(a) be the first projection, and v, : PicZH(E) x C — C be the second
projection. These maps provide the commutative diagram, as follows.

Pic®**(C)xC —2—s C
. 282, . 282, @
Pic™ “(C) 5 Pic C)xC ———> C
LetD = Zf\il p; denote a divisor on C for sufficiently large enough N, where p;’s are distinct such that p; # 7(P), 7(Q).
LetD =7*Dand £(+D) =L ® v;‘(95(il~)). We define
V 1= (1) (LD)/L(=D))g+ = (q1).(E(D)/E(=D))| 5,

where £(£D) = € ® q;(Oc(£D)). Let n = 2N = 2deg(D). The vector bundle ¥ has rank 2n and is endowed with a
nondegenerate quadratic form q induced by the form Q with values in Og+. For 0 <i <r, we let

Wy 1= (v).(£(D — a/P))|g+ and Uy = (). (L£(=b]Q)/L(~D))|gp.
Then, waf and Ubf are subbundles of V and isotropic with respect to the form q, with their ranks
rk(Wa;) =n-a and rk(?fb;) =n-1bj,
via the Riemann-Roch theorem. We thus have natural flags
Wy C Wa;_l Cc-C Wa(/) CV and Uy C Uy  C-ClUyC )%
of vector bundles on P*.
We take L € 9*, and let V := H(C,L(D) /L(—ﬁ)) be a vector space with a nondegenerate form induced by q. We

consider subspaces W := H%(C,L(D — a/P")) and Uy := H(C,L(-b/Q")/L(-D)) of V := H°(C,L(D)/L(~D)). Then,
Wy’s and U, are all isotropic to the nondegenerate quadratic form. Furthermore, through Mumford’s construction
i J

[16, p. 183], we establish HO(C, L(—b;.Q — ai’P)) as the intersection of two isotropic subspaces W and U, . That is,
i J
H°(5,L(—b;Q —aP)=WynUy CV.
i J

In particular, we can globalize this construction over the Prym varieties %+, so that V; , b,(C, €, P, Q) can be defined set-
theoretically by the condition

dimWy NUpy)2r+1—j—1, (3.2)
i J
the fiberwise intersection of two isotropic subbunddles W, and U}y in dimension atleastr +1 — j —iforalli, j.
i J
Combined with the triple 7(a’,b’) = (a, b, k) from Section 2, it is equivalent to say that the two-pointed Prym-Brill-

Noether loci V; b(C, €,P,Q) = V; , b,(C, €, P, Q) is the locus of line bundles L in %% such that

h%(C,L(—=b;Q — a;P)) = dim(W, N Up) 2r+1—i fori=0,..,r.
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The scheme structure of this presentation arises in a natural way from the scheme structure inherent in a Schubert vari-
ety associated with a vexillary element w(z) in the isotropic flag variety Fl of type D, where T = 7(a’, b"). We emphasize that
the scheme structure should be taken by the closure of the locus where the equality holds, as described in [1, Sectio4]. Thus,
V;’b(C, €, P,Q) has the expected dimension g — 1 — |a + b| where |a + b| := }’.(a; + b;). Moreover, ifV;,’b,(C, €,P,Q)has
pure codimension |a + b|, it is Cohen-Macaulay by [18], cf. [9, Proposition 2 (2)].

Now, we provide formulas for the K-theory classes of such two-pointed Prym-Brill-Noether loci V" b(C €,P,Q).

For an irreducible variety X, we denote by CK*(X) the connective K-cohomology which is a graded algebra over Z|[f]
where § is in degree —1. Especially, CK*(X) interpolates K-cohomology K°(X) at 8 = —1 and the Chow ring A*(X) at
B = 0. We refer the reader to [1, Appendix A], [2, Section 1.1] for the relevant facts of the connective K-theory.

Let A be the partition defined by 4; = a,,1_; + by;1_;. Fori =1,...,r + 1, letc(i) = cK((WHl_j)Y .) be the K-theoretic
Chern class of (Wy4;—;),. and

e (i) = (—Ddimwr‘w)}’(wgai,Ugu)Cﬁ(ngr/(Wm_i)gu) ifm =2
" 0 otherwise

as the specialized Euler classes. See [1, Appendix B] for the Euler classes in details. Since the bundles U; have trivial Chern
classes for sufficiently positive D as in [9, Lemma 5.1], we have the following theorem by [1, Theorem 4.

Let d(i) = c(i) + o(i)e(i) for o(i) = (=1)},i = 1, ...,r + 1. Let T; be the raising operator raising the index of c(i) by one,
and let R;; = T;/T;. Let §; denote the operator acting by sending o(i) to 0. So, the action of §; replaces d(i) by c(i). We
write T; for §;T;.

Theorem 3.1. Let ¢, := ¢(1) be the number of non-zero components of 1. The dimension of V' b(C €, P,Q) is at least
g—1—|a+b| Ifdim(V; b(C, €,P,Q))=g—1—|a+b|, then we have

V;’b(C, €, P7 Q) = Pf/l(d(l)ﬂ cee sy d(fo)’ﬁ)
i=Pf(M)
in CK*(9*)[1/2). Here, M is the skew-symmetric matrix with entries

L=08iRy (1= pT)’emiAtl (11— BT /=4
1+ 6;6;(R;; — BT;) 2 — BT; 2-pBT;

mi’j =

(e, () = (=D oe, (D) - (cz,()) + (=D oez, ().

If ¢, is odd, we augment the matrix M by
mo; = (1 — BTl 14+ 2 - gT)~L. (2, () + ez, ()

By the property in the connective K-theory, we have the class in the chow ring A*(%*) at 8 = 0, and K-theory class in
K°(P*)atf = —1.

In addition, we have Corollary 1.2 from Theorem 3.1 at § = 0 and [9, Lemma 5.2] that the Chern classes c(Wl.V) = e
for sufficiently large D >> 0, which is independent of the choice of i.

In Corollary 1.2, when we take a and b constructed by a’ = (0, ...,r) and b’ = (0, ...,r) with (2.3) and (2.5), the above
corollary gives the result [9, Theorem 9]. Moreover, if we take P = Q, then we obtain the class of the pointed Prym-Brill-
Noether loci with special vanishing orders a + b = (a; + b;); at P.

4 | THE COUPLED PRYM-PETRI MAP

In this section, we modify the ideas in [20] which consider the pointed case and adjust the classical Brill-Noether case for
two points in [17].

Let C be a smooth curve of genus g. Let 7 : C — C be an irreducible étale double covering associated with a non-trivial
2-torsion point € in Jac(C). Let ¢ : C — C be the involution of C. The involution acts on the space H’(C, Kg) so that one
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has a decomposition
H(C,Kz) = H'(C,Kz)" @ H(C,Kz) ™,

where H(C, Kz)* is the space of invariants and H°(C, Kz)~ is the anti-invariant sections. Since Kz = 7*K, and by the
push-pull formula, the space H%(C, Kg) of differential forms splits into a direct sum

H°(C,Kg) = H(C,K¢) ® H(C, Ko ® €).

Given the norm map Nm : Pic(C) — Pic(C) induced by the covering 7 as before, we have 7*oNm = idpic(cy ® € and
Nmor* = 2idpicc, see [19, (3.1.1-2)].

Let P,Q € C. Given a’ = (0 < ay <a; <--<ay)and b’ = (0 <by <b] <--- <b})such that min{a/ , —al,b | —

b! }=1fori=0,..,r —2,we have a = (a, ...,a,) and b = (by, ..., b,) of even length (by puttinga_; =b_; =0 1f neces-
sary) from (2.3), (2 4) (2.5), satisfying ho(C, L( aP-bQ)=r+1—iforali,LeV’ b(C €, P, Q). We mainly focus on
the case where r + 1 is even for the rest of this paper, since the one where r + 1 is odd follows similarly.

We define

T} (a,b)= Y HY(C,L(-a;P - b;Q)) ® H(C,Kz ® LY(a;P + bQ)). (4.1)

0<i<r

We will use TIL,, for TL 5@ b) as an abbreviation. It is worthwhile to note that H(C,L(—=a;4,P — b;1;Q)) C

H(C,L(—a;P — b;Q)) such that there might be a nonempty intersection between terms in (4.1). The coupled Prym-Petri
map is given by the composition pou

who o Th, 5 HOC k) D HOC.Ke ®¢).

To be more specific, one may view the coupled Prym-Petri map as follows. We take sections
€ H(C, L(-a;P — b;Q)\ (H(C, L(—=@a;41P — b;11Q))) for 0 <i <r—1, and
o, € H(C,L(—a,P — b,Q)).
Then, the composition pou
. I p
Do) ® H(C, K ® LY (a;P + b;Q)) = H(C,Kz) — H(C,Kc ®€)
i=0

can be defined by sending o ® 7 to 1/2(c.7 — 1(0).1(r)) where ¢ is the involution for the double cover C. In particular, given
the inclusions

#HO(C, L(—a;P — b;Q)) & *H°(C, L) — H(C, Kz®LY) < HC,Kz ® LY(a;P + b;Q))
for each i, we may call the composition pou restricted to a map

M @(Ui) ® H(C,Kz ® LY (a;P + b;Q))/*H(C, L(—a;P — b;Q)) —» H(C,K¢ ® €)

the coupled Prym-Petri map u for L.
We remark that the coupled Prym-Petri map recovers the Prym-Petri map in [21] with specialization a’ = (0,1, ..., r)
andb’ =(0,1,...,r).
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Now, we provide information regarding the tangent space of the two-pointed Prym-Brill-Noether loci with the coupled
Prym-Petri map. Let us consider the natural maps &;

& :H'(C, 0¢) » Hom(H(C, L(~a;P — b;Q)), H'(C, L(~a;P - b;Q))),
as the transpose of
w + HY(C,Ke ® LY (a;P + b;Q)) ® H(C, L(=a;P — b;,Q)) » H’(C,K¢)
given by £;(v)(c) = v U 0. More generally, we define §; inductivelyon 0 <i <r —1by
& : ker(§,,) » Hom(H(C, L(—a;P — b;Q))/H’(C, L(=a; ;1P — b;;,Q)), H'(C, L(—a;P — b;Q))),
which comes from the restriction of the natural maps
H'(C,06z) — Hom(H’(C, L(—a;P — b;Q)), H'(C, L(~a;P — b;Q))).
In fact, the locus V;,b(C, €, P, Q) contains the Zariski open subset
Vi ,(C.e,P,Q)° = W;g_z(c“i,P, Q)° NP+ ifrisodd,
V;,b(C, €,P,Q)° := W;g_z(a,P, Q)° NP~ ifriseven,
where
W3, ,(C.P,Qr i={L € Pic** *(C) : h°(C,L(—a;P —b;Q)) =r+1—i foralli}.

Then, the scheme structure of V; b(C, €,P,Q) along V; b(C, €,P,Q)° can be seen as the scheme structure on
ng_z(a, P,Q)° n P*, as shown in [9, Prop. 4(1)], [20, Section 2].

Lemma 4.1. The tangent space TL(ng_z(é, P,Q)°) is isomorphic to ker(&).
Proof. Similar arguments used for the classical Brill-Noether case with one vanishing point [7, (3.1)] hold for the proof of
Lemma 4.1.

Let L be a line bundle on C in W;g_z(ﬁ,P, Q)°. Let us take an affine covering {U;} of C such that the line bundle L
trivializes over it. We denote by {f};} the transition functions of the covering. The trivial infinitesimal deformation C. of
C has a covering {U,.}, where Uy, is the deformation of U, and the deformation L, of L trivializes by transition functions
of the form fy;(1 + €gy;). Since such family {g;;} can be considered as elements of H'(C, O¢), one can correspond the
deformation L, to an element of H 1(C, O&).

Given these setting, we let S denote a section of L vanishing with orders a; at P and b; at Q. The section S can be
deformed to a section of L. preserving the orders of vanishing on P and Q. To be specific, if P and Q are in some U, we
can have a section SI’C defined on U}, with vanishing to the orders a; on P and b; on Q such that

Fra+€gr)(Si +€S)) = S; + ¢S]
by taking
guS1 =S| = fuS,-
This, in fact, implies that gS vanishes in H'(C,L(—a;P — b;Q)), which gives the family {S; + eSI’C} as a section of

L.. An infinitesimal deformation of H'(C, O¢) lies in ker(§;) for all i if and only if it belongs to the tangent space

TL(ng_z(a P,Q)°). Hence, we obtain the lemma, since ker(&,) is the subspace of H'(C, Og) included in all ker(¢;). [
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According to [21, p. 673], the tangent space T7(%*) of the Prym varieties at L is given by

P ~
T (P*) = H(C,Kc Q@ €)¥ — H(C,Kp)".
Here, p' is the transpose of the projection map p. So, with Lemma 4.1, we get the tangent space
TV, 5(C. €, P, Q)°) = ker(§o) N HO(C,Kc ®¢)”. (4.2)

Since &, is the transpose of u, ker(¢,) = Im(u)™. Then, the right-hand side of (4.2) becomes Im(u)* n H(C, Kz®¢)" so
that

T, (V] ,(C.e.P,Q)°) = Im(@)*.
In fact, by the Riemann-Roch formula, we have
W(C KsQ®L(aP+bQ)=r+1—i+a+b for0<i<r.
We know that
dim H°(C,K; ® €) = dim Im(u) + dim ker(ﬁt).

We denote by |a| the sum of all g;s and |b| the sum of b;s. Since the dimension of the domain of u is |a| + |b| and
dim(H°(C,K: ® €)) = g — 1, we can deduce the dimension of the tangent space T (V, ,(C,e,P,Q)°) as

dim(T (V] (C,€,P,Q)°)) = g — 1 — |a| — |b| + dim ker(k).
Proposition 4.2. LetL € V; b(C, €,P,Q)°. Then, we have
dim; (V! (C,e,P,Q)) < g —1— |a| — |b| + dim ker(w).

Definition 4.3. For general points P and Q in the étale double cover C,a quadruple (C,¢, P, Q) satisfies the coupled
Prym-—Petri condition if u is injective for all L € V; »(C, €, P,Q) such that h(C,L(—a;P — b;Q)) =r + 1 —iforall i.

Proposition 4.2 and the inequality on the dimension of the two-pointed Prym-Brill-Noether loci in Corollary 1.2 give
rise to the following proposition.

Proposition 4.4. Suppose that (C,¢, P, Q) satisfies the coupled Prym~Petri condition, then V_ , (C,¢, P, Q) is either empty,
or smooth of dimensiong — 1 — |a| — |bl at L € V;b(C, €,P,Q) such that h°(C,L(—a;P — b;Q)) =r + 1 —i forall i.

5 | GENERAL CASE

The ultimate goal of this section is to prove Theorem 5.5. We adeptly draw upon and refine concepts from the unpointed
case as outlined in [21] and the pointed case in [20]. Moreover, we investigate the adaptation of the classical Brill-Noether
case as explored in [10] and pointed Brill-Noether case [7], in order to establish the proof of Theorem 5.5 in the context of
two-pointed Brill-Noether case.

Let us first consider a quadruple (6,¢,P,Q), which arises from the geometric generic fiber of a family, as
described below.

We denote by T = Spec(©) the spectrum of a discrete valuation ring @ with parameter ¢. It has a special point at 0 and
a generic point at 7. We should note that T has trivial Picard group, which will be used later. Let ¢ : € — T indicate a
flat projective family with a smooth surface ‘€. This family satisfies the following conditions: (i) the generic fiber 6, is
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FIGURE 1 A graphical representation of the special fiber €, and the étale double covering €, — €,.

smooth and geometrically irreducible, and (ii) the special fiber 6, is a reduced curve of arithmetic genus g. It consists of
a sequence of smooth components, which can be either rational components or elliptic curves denoted as Ej, ... ,Eq, as in
Figure 1. The special fiber only has ordinary double points as singularities. It is required further that for 1 <i < g, each
E; intersect the other components of 6, at the two points P; and Q;. Here, P; — Q; € PicO(El-) is not torsion.

Of significance here is the following property exhibited by such families: when considering a dominant morphism
T’ — T of spectra of discrete valuation rings, the family €’ — T’ acquired through base extension and minimal resolution
of singularities results in a special fiber 6, that satisfies the same conditions as 6.

If necessary, we extend the base to assume the existence of a line bundle € on € with ¢ & Og. In addition, its restriction
€, on 6, is nontrivial, while the restriction to € is non-trivial only on E,. We define € := Spec(Og @ ¢), and the ring
structure on € arises due to the isomorphism €2 & O. This ensures that 7 : € — @ acts as an étale double covering
map over T, with the generic fiber %n smooth and geometrically irreducible, and the special fiber ‘%O, a reduced curve
of arithmetic genus 2g — 1 depicted as Figure 1. That is, the special fiber consists of smooth components arranged in a
chain, some being rational and others elliptic, with only ordinary double points as singularities. We denote these elliptic
components by Ei’, El’ "fori=1,..,g—1,and Eg. When the map 7 is restricted over each curve E;, it forms a reducible
double covering E] L E]" — E;, where both E] and E;’ are isomorphic to E;. In addition, restricting 77 over E, gives rise to an
irreducible double covering E, — E,. Especially, the difference between the preimages of two points where E, intersects
the remaining curve 6, corresponds to a 2-torsion point in the Jacobian Jac(Ey).

Then, we carefully pick sections P : T — @ and Q : T — 6 such that the corresponding points P, and Q, are in a
rational component that splits the chain of Gos resulting in a connected component with an arithmetic genus of 2g — 1.

Presented below is an illustrative diagram encapsulating the maps:

5.1 | On the quadruple

To prove Theorem 5.5, we need to establish Theorem 5.4, which necessitates certain preparatory setups and lemmas
covered in the following sections: Sections 5.1, 5.2, and 5.3.
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The relevant coupled Prym-Petri map for Theorem 5.4 can be described as follows. Let V} | (6, P,, Q,) be the two-
pointed Prym-Brill-Noether loci associated with €, with two points P, and Q,. We consider &, € V; »(6ns Py, Q) and

M, = *Z,. Here, one may read J, as K@n ® Eﬁ,\?’. Suppose ho(‘:én, Z,(=a;P, — b;Qy)) =r + 1 —ifor each i, and take
sections

0; € $. L, (—a;Py — biQI\P. L, (—a; 1Py — bi1Qy) for 0 <i <r—1

and o, € $*S£n(—a,P,7 — b,Q,). As before, we have the composition

14

0. Ly (—aiPy = bQy) & ULy = Gy > G, My (a:Py + Q). (5.1)

The coupled Prym-Petri map for &, becomes

R, @01) ® $udly(aiPy + biQ)) /' §.Z 5 (—aiPy = biQ,) — $.(Kg, ® ). (5.2)
i=0

The map ﬁn can be extended to a map over T. Since the map ﬁn is defined on a subspace of

r

P ® ., (a;P,; + biQ,) € @D $.%y(—aiPy — biQ,) ® Flyy(@iPy + biQy),
i=0

i=0

we extend the line bundles Z,, #, (—qa;P, — b;Q,) and JL,(a;P, + b;Q,) over @.

As in [21, Equation (2.7)], the following possible base extension and minimally resolving the singularities, one can
extend the line bundle £, on %n to a line bundle & on 6. Here, Nm(%) is in fact given by K¢ 1 twisted by a line bundle
associated with a linear combination of the components of 6,. We may assume that the component E,; is not included in
the linear combination, since the Picard group of T is trivial so that O(6,) = O. Due to Nm(O(E))) = Nm(%(El.’ N
G(E;)for1 <i < g— 1and similarly for all the rational components of ‘%O, after a suitable twist, we can assume Nm(&¥) =
K 1 from this point forward.

Let Y be any component of G- By using the theory of limit linear series [10], the line bundle Z, over %n can be
extended to a line bundle %y over 6. This extension involves twisting a line bundle & on € with an appropriate linear
combination of the components of ;. The extended line bundle &y has degree 0 on the components of the special fiber
%0 apart from Y. Similarly, we have line bundles over € that are extensions of line bundles on €,,. Further we observe
that "(Zy) = ("Z),y) and Nm(ZLy) & Nm(Z),(y) as in [21, p. 677].

Additionally, as an analogous result from [20, p. 11] for the pointed case, we have extensions for the two-pointed cases as

follows. For each i, we consider the extensions Sﬁ%g of £, (—a;P, — b;Q,), /ﬂ%g of JL, (a;P, + b;Q,), ngg of Z,, and .ﬂgg
of /L, over @ such that those bundles have degree 0 on all the components of %0 other than Eg. Then, we have inclusions

L5 = $Ly(-aiPy —biQy) and  Golly < Golly(@Py +bQy)
of OG-submodules. Especially, given the inclusion
$.Zy(=0i11Py = bi11Qy) € Ly (=aiPy = biQ,),
there are integers «; such that the conditions
t%ig; € @Sﬁ%g\@ff%? fori=0,..,r—1
and %o, € $, % %g are satisfied on Eg asin [10, Lemma 1.2]. We note that {t%g;}; forms a basis of qﬁ&’%g. We let

g, :=t%g; foralli.
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Then, from the product of sections, one can deduce the map
PE @@» ® .l /06,2 — $.(Ke, ®€)
and this provides (5.2) over 7. In particular, we have the following inclusion:
z*&ﬁ*g%g o $*ﬂ%g (5.3)

of O7-submodules obtained by (5.1).

5.2 | The kernel of the coupled Prym-Petri map

In this section, we would like to investigate a particular situation: given p € ker(ﬁn), we assume p # 0. Then, there is a
unique integer y satisfying

t'p € EB(@) ® &/ﬂ%g\t(@) ® a*m,gg).

Indeed, t7 p lies in the kernel of i, since the element p is in the kernel of ﬁn' For each i, we consider restrictions to

i . T cpi 0 i ~
L= 1m<<;1,f.£§g - H <££Eg ®@Eg>>,

54
M= Im<$*./%%g - H° <./%%g ® %))-
We denote by o; € L' the image of 5; under the restriction 5*3’%3 — L, and p the image of t” p under the map
G?@) ® .l — 6!9@ ®M'.
We know from the assumption that
p#0 in P@)M /L, (5.5)
i

which is deduced by the inclusion (*L! < M via (5.3).

Before establishing the proof of Lemma 5.2 which concerns the inequality involving the sum of the orders of p at Pfg
and Qg (resp. Py and Qy), we need Lemma 5.1. Let X be a smooth surface and @ : X — T = Spec(O) be a flat projective
family. Here, O is a discrete valuation ring whose parameter is t. Let X, is the fiber over a special point t = 0.

Lemma 5.1. Let Y and Z be two components of X such that Y and Z meet at p. Let q1, q3, ..., s be points on Y for some s,
where q; # p. If a is the unique integer such that

t*c € (I)*gz\tq)*gz
for aline bundle £ ; on Z, then
ordg, (oly) + - + ordqj(aly) <a

for1<j<s.
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Proof. 1t follows [10, Proof of Proposition 1.1] with

deg Zyly = ordg, (oly) + -+ + ordqj(aly) +ord,(oly) + Z ordy(oly)-
q€Y\{p.,q1,--.q;} m

Now, we are ready to show the following lemma. Let Pfg and Qé be intersection points of Eg with the adjacent connected
components, and let Py and Qj be the images of Py and Q; under the involution ¢, respectively, as in Pig. 1.

Lemma5.2. Ifp € ker(ﬁn), then we have
ordpl/g (o) + orerg(ﬁ) >2g—2 and ordpg () + orng (p) = 2g — 2. (5.6)

We say the relation (5.6) on p if and only if o is a linear combination of elements of the form o; ® 7 for7; € M ! where
ordPé(Ei) + ordgy (0;) + ordpé(?j) + ordeg(?j) >2g—2foralli,j.

We borrow some results in [7, Proof of 3.2],[10, Section 3], and [21, p. 679] along with [20, Proof of Lemma 3.4] to verify
Lemma 5.2.

Proofof Lemma5.2. Let1 <k < g—1.Let P,’{ and QI’{ be the intersection points where E;{ meets the adjacent components
fork =1,...,g — 1, and the connected components meeting El’{ at Pl’{ contains the points P(’) and Qg, asdescribed in Figure 1.
By the same argument for [10, Lemma 1.2], it can be assumed that there is a suitable power «; ) so that

1940, € L1 (~aiP}, = QNG Ly (~ais1 P, — bi1 Q) (5.7)

fori =0,..,r —1,and t%o, € &ikf,fE}r{(—a,P,’c —b,Q;)on E;. For 0 <i <r,weletG;, := t%kg;. Subsequently, there is a
unique integer y; for each k such that

p & @D (61 ® Pl (@iP}, + O\ (Gi) ® Buolliy (@iPf +b:Q)) ) )-

i=0

In particular, for k = g, we use Eé, Gi ¢ and y, to indicate Eg, &, and y respectively.
We modify some arguments for the unpointed case in [10, Proof of Proposition 1.1, pp. 277-280], and the pointed case
in [7, Proof of 3.2] as well as [20, Proof of Lemma 3.3].
/

To be precise, by the construction of a and b (via (2.3, 2.4, 2.5)), (5.7) implies that for each i, there exists a; ; that is ocl.Q]’{‘

/

P
or a, ,’i such that either

% _ -
tYiko; € ¢« Ly (—ay Py = b QNS Ly (—ay Py — b, Q) or

p!

t“iko; € gLy (—a|P) — bQ\$. L (—a,,,P| = bQ))

/

/ —~
for some u := u(i) € {0, ...,r}. Hence, {ociQ,’(‘ } U {“?Z} with I UJ =0, ...,r}is a basis of ¢*S“PE,Q(_a0P1’c — boQ)).
el ) jer

. . Q, P
Then, there exists either y,  or y, ; such that we have

q _ _

56 py € (Gi) ® Pl (@, + DL\ (i) ® Bl (@, P +b,Q))), or (58)
7 _ _

{15k py € (G ® Bl (@ P, + BQ\E((Gi k) ® Gl (@l + b,Q)) ). (5.9)
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/ /

k

/ Pl
Thus, we set yj = max; ; {yfk , yj,’;{ } Also, for the first case (5.8), t"p = 0ify > leI’{‘ and for (5.9), "o = 0ify > yi’l’z. This

enables us to have
< Tk + Yk
Pk Ordpl/((t plEl’() OI‘dQl/((l plEl,c)

Furthermore, Lemma 5.1 gives either

P/

k
ordpl/(_1 (ailE’:_l) + ordQ;(_1 (ailE’:_l) <a, or
” (5.10)

k
OrdPLl(UﬁEl’H) + OrdQl’Pl(O’ilEl’{il) S,

for each i. Following the argument of [10, Lemma 3.2] with its proof as well as the proof of [10, Proposition 3.1], we obtain
ordpy (pilg_)+ordy  (pilg ) <7

In particular, if equality holds on (5.10), o; vanishes on E ]’{_1 only at Pl’{_1 and Ql’{_l. Then by [21, (2.8)], there is at most
one section of degree «; ; vanishing only at Pl’{_1 and Q;{_l up to scalars in El’c_l. Hence, with similar arguments as in [10,
pp- 279-280], the assumption p € ker(ﬁn) gives rise to

ordplr{ (th+1p|Elr{) + order{ (t}’k,o|E]/<) > ordPL_l(th—lplE;(_l) + order{_l(th—lp|Elrc_1) +2 (5.11)

fork = 2,...,g. Asmentioned in [20, Proof of Lemma 3.4] as well as [21], the arguments presented in [7, 10] can be applied
to the families of curves with special fibers consisting of a chain of rational and elliptic curves. So, our choice of points
where the difference of any of two nodal points in El’{ is non-torsion in Jac(E l’{) enables us to have the inequality (5.11).

Thus, from (5.11) for k = 2, ..., g, we finally obtain the statement on Pé and Qé. Similarly, we have the other statement
about Py and Q; as P" and Q;" can be seen as «((P)) and «(Q)) with E} :=«(E)) forl =1,...,g. O

We recall that the difference P, — Py and Q, — Qg are 2-torsion points in Jac(Eg). So, there is nothing we can achieve
beyond (5.6) from the above application of the argument presented in [7, 10, 20].

Lemma 5.1 is analogous to [20, Lemma 3.4] for pointed case and [21, (2.20)] for unpointed case. In the subsequent
section, we provide a statement on the vanishing of p, Lemma 5.3.

5.3 | A vanishing statement
For the points Pfg and Qé on Eg, we have
széEg ® Op = L ® Op(~a;P; —bQ)), and
(5.12)

./%%g ® Of = Jlg, ® Op(a;P) + biQy)

from £, (-a;P, — b;Q,) and ., (a;P, + b;Q,) discussed in §5.1. It is shown in [21, (2.21)] that both line bundles &£ B, ® 06 B,
and /ﬂgg ®06 B, exhibit isomorphism to either

6] Eg((Zg —2)Py) or O Eg((zg —3)Py + Py). (5.13)

This is derived by the fact that these line bundles (5.13) are different but have the same image as 0 Eg((Zg — 2)P,) under
the (2 : 1) norm map

Nm : Pic®® (E,) — Pic® *(E,),
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the line bundles (5.13) are invariant under the involution ¢ of Eg from ZPé = ZPé’ inJ ac(Eg), and the isomorphisms
Nm(ngg ® @gg) = Op,((28 —2)P,) and Nm(/ﬂgg ® @gg) = Op,((28 — 2)Py).

Putting together with (5.12), we have the following lemma.

Lemma5.3. Let & 7 ® 6 B, and ./%Eg ®06 B, be the line bundles both isomorphic either to one of two line bundles in (5.13).

If

.
pe@E) @M/l
i=0

with the property (5.6), then p = 0.

Proof. Provided the assumption & E® Op = ./%E-g ®0 B, along with (5.4, 5.12), the spaces L' and M for all 0 < i < r are
injectedinto V' :=H O(ﬂgg ®0 gg(a,Pé + b,Q})). To prove this lemma, we find an appropriate basis of V.

(1) We first consider the~case where & £ ® 6 B, = ﬂgg ®6 B, = 6 E, ((2g — 2)P;). We note that 2Q, = 2Q; on Eg, and
take points Q;, Ry € Eg\{Pg, Py, Q. Q7} such that Q; + Ry = Qg + Q. Let us define the divisors

Dyisp) i = (28 = 2+ a, — 2k)P; + 2kPg + (b, — 2D)Q, + 21Qy

N T e
fork=0,..,8 1+[2 ,l—O,...,_ZJ
(5.14)
Dk = (28 =2+ a, — 2k)Py + 2kPy + (b, — 3 —21)Qy + (21 + QY + Q; + R

b, —2
fork=0,...,g—1+l%J,l=0,..., _ ’2 J

on Eg. Let e, be a section in V with divisor D,, forn € {0, ...,2g — 4 + a, + b,,2g — 2 + a, + b, }. We note that for any
integers a, b, divisors D), = D, — aP; + aQ, — bPy + bQy are isomorphic to D,,. For instance, it implies that D, ;) &
Dy+1) because Dy 10y = Da(o41) — 2Pé + 2Qé. Then we have 2g — 2 + a, + b, sections e,, such that the sum of the
possible vanishing orders at P, and Qj (resp. Py and Q) are all distinct. Thus, {e,}, forms a basis of V. We write

r
ﬁ = @ :31'
i=0
where p; € (7;) ® M'. We take i satisfying p, # 0. By Lemma 5.2, we know that

ordp;z (o) + ordQé(ﬁi) >2g—2, and

Ordpg (ﬁl) + orng (ﬁl) >2g—2.

The basis {e, },, of V leads to the following bases: {v;,},, of HO(Sﬁgg ® Op(—a;Py — b;Q})) and {w,,},, of HO(./%Eg ®
Op(a;Py + bQ))).

Weletcy, = ordpé (vp) + ordQé (vy). The way of constructing the basis using the divisors presented in (5.14) implicates
the following equations:

2g—2—a;—b;—c, ifa;+b;+c,=0mod2

. (5.15)
2g—4—a;—b;—c, ifa;+b;+c,=1mod?2.

ordpg(vh) + ordQ/g/(vh) = {
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Also, if we assume d,,, = ordpé (wy) + ordQ‘;g (wy,), then we have

2g—2+ai+bi—dm lfal+bl+dm50m0d2

' (5.16)
2g—4+a;+b;—d, ifa;+b;+d, =1mod?2.

ordpé/(com) + ordQ/gr(com) = {

We know that (g;) C Ho(if’gg ® Oz(—a;P) — b;Q;)) and M' C Ho(ﬂfg ® Og(a;Py + b;Qy)). So, one can write p; =
3 hm ZhmOn @ Wy As bases {vp,}, and {wy, },, have distinct sum of vanishing orders at Py and Q respectively, we have
Zpm = 0for all h, m such that

ordpé(vh) + ordpé(cum) + ordQé(vh) + ordQé(com) <2g-—2, and

ordpg(vh) + ordpg(com) + orng (vp) + ordQé/(wm) <2g-2.

In fact, the conditions ordpé(vh ® w,,) + ordQé(vh ® w,,) > 2g —2and ordpg(vh ® w,,) + ordQé/(vh ® w,) =28 -2
happen when ¢;, + d,,, > 2g — 2 as well as

cp,+d,=2¢g—2 and a;+b;j+c,=0a;+b;+d,, =0mod 2. (5.17)
Then, we have
div(vp) = u1 Py + (dyy — @; — up)Py + (¢ — u1)Qg + (U, — by)Qy and

div(wy,) = (dn — Ux)Pg + (@; + uy)Py +u,Qg + (cp + by — up)Qy

for some nonnegative integers u; and u,, where 0 < u; < ¢, and b; < u, <d,, — a;. With these setups, we can
conclude that the image of t*v), under the composition of the following inclusions:

CHO(25, ® Op (—a;Py - Q) ) & ' HY(Zg, ® 05, ) = H(Alg, ® O5, ) < H*( Mg, (@Py +biQ}) )
is contained in (w,,). This implies p; in (7;) ® Im (:*L & M'). Thus, it must be that p vanishes in @,_,(5;) ®
M!/i*L!, as desired.
(2) Next, we take the case where Z5 ® Op = .y ® Op = O ((28 - 3)Pg + Pg). Similarly, we have that 2Q; = 2Qy

on Eg such that we have Q,,R, € Eg\{P’ . Py, Qg, Qg such that Q, + R, = Py + Py . We define divisors

Dy(ksny41 = (28 =3+ a, — 2k)Py + 2k + 1Py + (b, — 2D)Q; + (2l + 1)Qy

_ a, —3 _ b,
fork=0,..,g+ l > J ,1=0,..., 2
(5.18)
Dyiey1y = (28 — 4+ a, — 2k)Pg + 2kPy + (b, — 2D)Q, + 21Q7 + Q2 + R,
b
fork=0,..,g—2+ [%J ,J=0,.., é
on Eg. We follow the same argument as before, but using
2g—2—a;—b;—c, ifa;+b;+c,=1mod2
ordpy (vy) + ordgy(v) = 4 © PO T (5.19)
g g 2g—4—a;—b;—c, ifa;+b;+c;, =0mod?2
rather than (5.15), and
2g—2+a;+b;—d, ifa;+b;+d, =1mod?2
ordp (@) + ordgy () = 4 & pTOr T G AT O G (5.20)
& & 2g—4+a;+b;—d, ifa;+b;+d, =0mod?2
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in place of (5.16). These modifications give
cp+d,=2¢g—2 and a;+b;j+c,=0a;+b;+d,, =1 mod?2.

instead of (5.17). Then, the rest of the arguments works as before. O

5.4 | Proof of main result
With the groundwork set from previous sections, we can now proceed to prove Theorem 5.4.
Theorem 5.4. The quadruple (6,,¢,, P), Q,) satisfies the coupled Prym~Petri condition.

Proof. &, € V; b(6ns Py, Q) such that ho(@?, Z,(=a;P, — b;Q,)) =r + 1 —ifor each i. Let p be an element of the ker-
nel of the coupled Prym-Petri map ﬁn (5.2). Suppose p # 0. Then, p # 0 by (5.5). However, this gives a contradiction for
Lemma 5.3 with Lemma 5.2. Hence, we obtain p = 0. O

The following is our main result, the coupled Prym—Petri theorem.

Theorem 5.5. Let C be a general curve of genus g and € an arbitrary non-trivial 2-torsion point in the Jacobian Jac(C). For
general points P and Q in the étale double cover C, the quadruple (C, ¢, P, Q) satisfies the coupled Prym—Petri condition.

Proof. Since it is an open condition on families of quadruple (C, ¢, P, Q) to satisfy the coupled Prym-Petri condition, the
statement can be proved by the existence of a quadruple (C, €, P, Q) with € # 0 where the coupled Prym-Petri condition is
satisfied. This is based on the fact that the moduli space of quadruple (C, ¢, P, Q) with a fixed genus and € # 0isirreducible,
as in [20, Lemma 3.2].

So, the statement can be established by proving that the geometric generic fiber satisfies the coupled Prym-Petri con-
dition. Let us consider the geometric generic fiber (‘65, €5 Pﬁ, Q,—)), where ‘"65 = %n ® Fn), & 1=¢,® Tn), and Pﬁ, Qﬁ
are the points in %5 = %5 ® Tn) induced by P and Q, respectively. In fact, it is evident from [10, p. 272] that any line
bundle on 63 is constructed from a line bundle over some finite extension of k(n). Henceforth, Theorem 5.4 concludes
the statement by finite base change and change of notation. O

Combined with Proposition 4.4 and Theorem 5.5, we complete our second main Theorem 1.3.

As Corollary 1.4, we have the condition on the non-emptiness of the pointed Prym-Brill-Noether loci V;’b(C ,P,Q).

In Corollary 1.4, if g—1 = |a + b], then V| ’b(C, €, P, Q) associated with a general curve C with general points P, Q is
given by a finite number of distinct points. This number can be expressed by the degree of the class of V;,b(C, €,P,Q). By

the Poincaré formula, deg(£87') = (g — 1)! = |a + b|! so that the degree of the class turns out to be

r
1 ai+b,~—aj—bj

d [V’ C,e P, '] = |a + b|12la+bl—t . 521

eg( a,b( ¢ Q)> la+bl g(ai+bi)!Hai+b,~+aj+bj ( )

j<i

Let ¢ = (g > -+ > ¢¢) be a strict partition such that ¢, > 0. The strict partition is corresponding to a shifted shape
consisting of ¢; boxes in ith row where each ith row is shifted i steps to the right. The standard Young tableau (SYT) of
shifted shape ¢ is a filling of ¢ using 1, ..., || such that the entries in each row and column are strictly increasing. For
instance, if ¢ = (4, 2, 1), all the possibilities of SYT of ¢ are

[1]2]4]7] [1]2]4 a]s] [1]2]3]7] [a]2]3Te] [2]2]3]s] [1]2]3
3]s 3]s 6 4[5 4]s 4]6 56| -
Lol L7 L7 LoJ 7] L7 L7

@
[=]~]

As in [20, p. 3], the degree (5.21) can be obtained by
2/a+bl=Co ISV of shifted shape (a, + by, ..., ag + b))k

In addition, if ay + by = 0, we use the strict partition (a, + b, > --- > a; + b;) with ¢ = r for the degree of the class.
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